From simple rules, complex structures and relationships are well-known to emerge, something that... [+] predated Stephen Wolfram by many years. The notion that all of fundamental physics can be derived from such an approach is speculative, at best, today.
Every once in a while, a revolutionary idea comes along that has the potential to supersede our best scientific ideas of the day. This happened numerous times in theoretical physics during the 20th century, as Einstein's General Relativity replaced Newtonian gravity, quantum physics replaced our classical view of the Universe, and the quantum field theory-based Standard Model superseded the early-20th century version of our quantum Universe.
Over the past half-century, many novel ideas have sought to surpass the current limitations plaguing theoretical physics, from supersymmetry to extra dimensions to grand unification to quantum gravity to string theory. The ultimate idea of many is to arrive at one unified theory of everything: where one framework elegantly encompasses the entirety of nature's laws. The latest contender is Stephen Wolfram's new approach to a theory of everything, heavily publicized last month. But not only isn't it particularly compelling, it isn't even science at this point. Here's why.
Countless scientific tests of Einstein's general theory of relativity have been performed,... [+] subjecting the idea to some of the most stringent constraints ever obtained by humanity. The presence of matter and energy in space tells spacetime how to curve, and that curved spacetime tells matter and energy how to move. But there's a free parameter as well: the zero-point energy of space, which enters General Relativity as a cosmological constant. This accurately describes the dark energy we observe, but does not explain its value.
When we use the word "theory" in a conventional sense, we talk about it the same way we'd talk about the word "idea" or "hypothesis." We mean that sure, we have our conventional way of thinking about things that we generally accept, but maybe things are actually this other way instead.
To a scientist, though, a theory is a far more powerful thing than that. It's a self-consistent framework that has the quantitative power to predict the outcomes (or sets of probable outcomes) of a large set of systems under a wide variety of conditions.
A successful, established theory goes even farther. It contains a large suite of predictions that agree with established experiments and/or observations. It's been tested in a large number of independent ways, and has passed every test thus far. It has a range of validity that's well-understood, and it's also understood that the theory may not be valid outside of that particular range.
A Universe with dark energy (red), a Universe with large inhomogeneity energy (blue), and a... [+] critical, dark-energy-free Universe (green). Note that the blue line behaves differently from dark energy. New ideas should make different, observably testable predictions from the other leading ideas. And ideas which have failed those observational tests should be abandoned once they reach the point of absurdity.
Which means, if you want to surpass that theory in a scientific sense, you have a tall order ahead of you. You have to do better than the old theory that you're seeking to replace with your new idea, and that means you have to take these three very difficult steps.
This is asking a lot, and most new ideas never make it this far.
An early photographic plate of stars (circled) identified during a solar eclipse all the way back in... [+] 1900. While it's remarkable that not only the Sun's corona but also stars can be identified, the precision of the stellar positions is insufficient to test the predictions of General Relativity.
When Einstein concocted the general theory of relativity, it took many years for him to understand how to take the weak-field limit of the theory: at large distances from point-like masses, which allowed him to recover Newton's old theory of gravity. When you got too close to a large mass, however, the predictions differed. This allowed for a successful explanation for Mercury's orbit (which Newton's theory couldn't account for), as well as a new prediction about light deflection near the limb of the Sun (confirmed years later by the 1919 solar eclipse).
Einstein's General Relativity is a standout example of a successful scientific theory on all three of these fronts, but things don't always go in order the way you'd hope they would. Still, you have to clear all three of these hurdles if your goal is to push our understanding of the Universe forward in some fundamental way.
The quantum fluctuations that occur during inflation get stretched across the Universe, and when... [+] inflation ends, they become density fluctuations. This leads, over time, to the large-scale structure in the Universe today, as well as the fluctuations in temperature observed in the CMB. New predictions like these are essential for demonstrating the validity of a proposed fine-tuning mechanism.
General Relativity succeeded everywhere that Newtonian gravity does, but also where it does not. It has a larger range of validity. Relativistic quantum mechanics superseded the version developed by Bohr, Pauli, Heisenberg and Schrodinger, only to later be superseded itself by quantum field theory and the eventual arrival of the Standard Model. The Big Bang won out because its predictions were borne out by the Universe; inflation superseded the idea of a singular origin because it cleared those three critical hurdles (despite doing so out of order).
But many great ideas haven't been met with successful predictions, and they can only be considered speculative theories at best. Supersymmetry, extra dimensions, supergravity, grand unification, and many other ideas have produced a large number of predictive ideas, but none of them have been observationally or experimentally confirmed. General Relativity and the Standard Model, wherever we've challenged them, have always emerged victorious.
The Standard Model particles and their supersymmetric counterparts. Slightly under 50% of these... [+] particles have been discovered, and just over 50% have never showed a trace that they exist. Supersymmetry is an idea that hopes to improve on the Standard Model, but it has yet to make successful predictions about the Universe in attempting to supplant the prevailing theory. If there is no supersymmetry at all energies, string theory must be wrong.
Still, many hope that we'll discover a more fundamental set of laws that encompass all the successes of General Relativity and the Standard Model, while explaining the puzzles like dark matter, dark energy, the values of the fundamental constants, quantum gravity or black hole paradoxes, etc. that they cannot yet fully account for.
The most popular candidate for such a "theory of everything" is string theory, which at least has been demonstrated to contain all of General Relativity and the Standard Model within it. Yes, it also contains much more (extra dimensions, extra free parameters, extra couplings, extra particles, etc.) that don't appear to be present in nature, as well as ambiguous-at-best predictions that have not been borne out by experiment.
For Wolfram's novel idea, however, the same cannot be said.
Although the mathematical structures one can arrive at are beautiful and intricate by many metrics,... [+] their connection with the physical laws and rules governing our Universe remains speculative at best.
There are all sorts of mathematical structures that one can develop or concoct that have interesting properties, as well as simple rules from which complex structures emerge. Wolfram takes the latter approach, something he's been toying with for decades (including in his book, A New Kind of Science), and is clearly enamored with it.
But can he get known physics out of it? The answer appears to be "not yet," as he himself points out:
"...there is much left to explore in the potential correspondence between our models and physics, and what will be said here is merely an indication and sometimes a speculative one of how this might turn out."
He does not recover all of General Relativity; he does not get the Standard Model or Quantum Field Theory out of it. He has not progressed to the point of making predictions, much less novel ones that differ from what we already have.
An example of how a series of binary but indeterminate events can lead to many possible outcomes may... [+] have shades of probabilistic quantum mechanics in it, but the correspondence between Wolfram's approach and actual, reality-reflecting quantum physics has not been established.
He's only playing a game of applying rules to make structures, then attempting to find analogies between those structures and the actual physics of our Universe. This is a popular route (one taken by Verlinde, among others) when you're in the early stages of a new idea, butnot one that's been fruitful. None of the three critical criteria have been met so far, and what's more troubling is thatWolfram does not appear to believe his idea needs to. As he publicly stated:
"In the end, if were going to have a complete fundamental theory of physics, were going to have to find the specific rule for our universe. And I dont know how hard thats going to be. I dont know if its going to take a month, a year, a decade or a century. A few months ago I would also have said that I dont even know if weve got the right framework for finding it.
But I wouldnt say that anymore. Too much has worked. Too many things have fallen into place. We dont know if the precise details of how our rules are set up are correct, or how simple or not the final rules may be. But at this point I am certain that the basic framework we have is telling us fundamentally how physics works."
A visual summary of Stephen Wolfram's new 'path to a fundamental theory' that he published in April... [+] of 2020. At this point in time, his idea has failed to meet any of the three criteria necessary for a scientific theory to supersede the pre-existing one.
These are not words that carry any legitimate scientific weight behind them. Wolfram a former physicist who's been scientifically trained is going off of what he feels. Deep in his gut, he knows that he's embarked down a road that must lead to the ultimate destination: a fundamental theory of everything. Whereas an objective observer would see ambiguous signposts with no clear indication of what lies farther down the road ahead, Wolfram unshakably believes he's on the path to Victory Road.
And that's the problem: you need to know those precise details (the ones he's glossing over) in order to evaluate your idea in a scientific manner. The only way to know the scientific value of an idea is to confront it with reality, and ask to what precision both your established and novel predictions agree and disagree with the prevailing theory it's trying to supersede. If you cannot quantify your predictions, and then (at least in principle) go out and test them, you do not yet have a scientific theory.
The idea that the forces, particles and interactions that we see today are all manifestations of a... [+] single, overarching theory is an attractive one, requiring extra dimensions and lots of new particles and interactions. The lack of even a single verified prediction in string theory, combined with its inability to even give the right answer for parameters whose value is already known, is an enormous drawback of this brilliant idea.
Which isn't to say that Wolfram's new idea is wrong, or that his approach will never bear any fruit. It's very hard to have a new idea in physics, and it's even more difficult for that new idea to actually be any good. Wolfram's general approach to physics is not new in and of itself, but his specific angle is novel and isn't obviously wrong. But what he's presented to the world isn't fully-baked or even half-baked; it's an early-stage idea that's still not ready to leave the sandbox.
Much like String Theory, we won't know whether this path is the road to a new fundamental theory of everything or whether it's a blind alley irrelevant for our reality until we get to the end. But unlike String Theory, it is not yet clear that all of General Relativity or Quantum Field Theory can even be extracted from this approach. Until this (or any) new idea can reproduce all of the successes of our pre-existing leading theories, solve problems they cannot solve, and make novel-but-testable predictions, it will not meet the necessary criteria of a scientific theory.
Go here to see the original:
3 Simple Reasons Why Wolfram's New 'Fundamental Theory' Is Not Yet Science - Forbes
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]