This is an edition ofQuintessence, a series about fundamental ideas in science.
Earlier this year, IBM unveiled a much-hyped device at the Consumer Electronics Show in Las Vegas: a black cylinder hanging at the centre of a locked glass cage. Light from a wide panel on top bounced off of it. It was a simulacrum of a computing machine but it looked futuristic, even too futuristic. It didnt look like any normal computer because it wasnt.
It is easy to forget that even the simplest function on any electronic device in use today is the result of many, many transistors working in tandem. A keystroke, a button press, a single tap all of it is about current flowing in and out of a transistor, the modern version of which was invented 72 years ago.
A bit, which is the most fundamental unit of computing, refers to the state of a transistor. If the transistor is on, the bit has a value of 1; if the transistor is off, the bit has a value of 0. Every instruction fed to a computer and output derived from it is a pattern of such 0s and 1s. The computers hardware and software manipulate these patterns using a set of rules called Boolean algebra. All this logic flows at blazing speeds, enabling humankind to make rapid technological advancements.
But even though transistors have become incredibly sophisticated over the years and engineers have become able to cram billions of them on tinier and tinier chips, they are still classical objects. The kind of computing they lend themselves to uses the simpler principles of classical physics and is therefore limited by the limitations of these principles. The deepest of them is this: transistors can either be on or off. A bit can only assume one value at a time.
This is where IBMs sleek machine turns the curve. Enclosed in the black cylinder lies the soul of a quantum computer, in the form of a chip that taps into a more esoteric set of computing possibilities.
Also read:A Walk With Steven Kivelson Through the Realm of Strange Materials
Quantum computers are devices that manipulate quantum bits, or qubits. But instead of using a transistor to perform this function, quantum computers directly encode this information onto elementary particles like electrons and photons, or even entire atoms. These particles are thus part of a quantum computers hardware, and because they play by quantum rules, they execute their functions as qubits through strange quantum mechanical effects.
One of these effects is superposition. Where a classical bit has two states 0 and 1 a qubit also has a state where it is neither 0 nor 1 (but not a third value). This value is a fuzzy combination of two states, like 40% 1 and 60% 0. That is, if a classical bit is like a mechanical switch that can be turned on or off, a qubit can be on and off at the same time but neither completely on or off. Classical objects cannot be in such superposition.
Most people have already heard of such behaviour in the form of the Schrdingers cat thought experiment. A cat and a bowl of poison are placed in a sealed box. Until an observer opens the box and checks, the cat a metaphor for subatomic particles is to be considered both dead and alive. Similarly, an unobserved electron can have a spin pointing up and down at the same time, but the moment it is observed, it defaults to one of the two states: either up or down.
Next, two classical bits can have one of the following four configurations: {0, 0}, {1, 1}, {1, 0} and {0, 1}. But two qubits can exist in a mixture of all four at the same time; indeed, N number of qubits can exist as a simultaneous mixture of 2N states, each one representing a possible solution. Put differently, instead of tackling a problem by pursuing one solution at a time like a classical computer, a quantum computer can pursue multiple potential solutions at once and, presumably, arrive at the optimal one faster.
Superposition explains how a single qubit can be more powerful than a single bit. To understand how multiple qubits can work together as computers will require physicists use another concept called entanglement.
Quantum entanglement establishes strong ties between particles such that if one particle changes in a particular way, the other one also changes in a corresponding way. For example, if two qubits are entangled and one of them reveals its state, the other qubit automatically reveals its state as well.
Though the components of a quantum computers are markedly different from those of a classical computer, they still have to behave like computers, including processing instructions and producing an answer to a question in a predictable amount of time. This means a set of entangled qubits in superposition should ultimately collapse into a meaningful configuration of 1s and 0s on demand.
This is tricky. A qubit has a finite probability of existing in one of two quantum states. So N qubits have a tendency to randomly settle into any one of the 2N possible states when measured. Eight qubits, for example, could settle into one of 256 states. To get around this problem, the qubits have to be subtly manipulated to increase their probability of chasing the correct, or more desirable, paths.
Scientists achieve this by orchestrating the qubits in such a way that the signatures of the undesirable quantum states cancel out and the right ones add up. This is how some quantum computing algorithms that can take advantage of this technique based on the idea of interference from high-school physics vastly outperform their classical counterparts.
Also read:The DIY Experiment That Captures All the Mystery of Quantum Physics
For example, a quantum computer could use Grovers algorithm named for the computer scientist Lov Kumar Grover to sift through very large, unstructured databases to find a specific entry faster than a classical machine can. Using Peter Shors algorithm, a quantum computer can find the factors of large integers that are prime numbers much faster than the best algorithms classical computers use.
Scientists in various fields would also like to understand how complex molecules behave and interact with each other. Powerful supercomputers struggle with the dynamics of such many-body interactions, but quantum computers are expected to have a knack for them because theyre networks of particles themselves.
On the flip side, quantum computers arent always better. There are many problems for which classical computers arent efficient and quantum computers arent either. In most of these cases, increasing the scale of the problem exponentially increases the amount of time the computer needs to find the answer. Quantum computers might be able to crack some of them efficiently but not some others.
It would also be prudent to move our eyes away from the horizon of infinite possibilities and towards the mountain range standing in the way. Qubits must be stable and work well together for a computer to compute. This is easier said than done. Multiple qubits in a superposition, and entangled with each other, tend to be quite fragile. Even the smallest physical vibration can destroy their collective coherence, interfere with their quantum nature and induce large errors that can render the machine useless.
Different research groups around the world have stretched engineering to its bleeding edge to prevent such decoherence. IBMs monolithic quantum computer cools its superconducting chip which carries the qubits to about 0.01 K, or 270-times colder than outer space.
Late last month, a paper quietly appeared on and promptly disappeared from a NASA website. In the paper, scientists from Google claimed to have performed a computing task way out of reach of even the best conventional computers using a quantum computer.
The company hasnt issued an official comment or shared a peer-reviewed paper. According to various news reports, its 53-qubit machine performed a purpose-built task a computation in about 200 seconds when a powerful classical machine would have required millennia. If independent experts are able validate Googles claim, it will be the first time a quantum computer will have surpassed a classical machine at a specific task.
That said, we are still decades away from a practically useful quantum computer. The transistor reigns supreme for now.
The author would like to thank Vedangi Pathak and Kevin Dsouza for discussions about quantum mechanics and computing.
Ronak Guptais doing a PhD in fluid mechanics at the University of British Columbia, Vancouver.
View post:
What on Earth Is a Quantum Computer, and Why Should You Care? - The Wire
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]