Nearly 5,000 patents were granted in [quantum computing] in 2022approximately 1% more than 2021. By January 2024, the United States had authorized and issued an aggregate of nearly 16,000 patents in the area of quantum technology (37% of the global total).
While artificial intelligence (AI) may occupy all the limelight from media, stock markets, large and small corporations, not to mention political figures, futurists and modernists know that the mainstreaming of quantum computing will enable the next real technology paradigm shift.
From its beginnings in the speculative musings of physicist Paul Benioff in 1980 to the groundbreaking algorithms of mathematician Peter Shor in 1994, quantum computing was a transformative discovery. However, it was not until Googles establishment of a quantum hardware lab in 2014 that the theoretical promises began to materialize into practical applications. This marked the onset of a new era, where quantum experimentation became increasingly accessible, with IBM democratizing access to prototype processors and Google achieving quantum advantage over classical supercomputers in 2019.
What is quantum computing?
It is a technology for performing computations much faster than classical computing by using quantum-mechanical phenomena. Indeed, quantum computing can theoretically provide exponential performance improvement for some applications and to potentially enable completely new territories of computing. It has applications beyond computing, including communications and sensing.
How does quantum computing work?
While digital computers store and process information using bits, which can be either 0 or 1, quantum computers use qubits (quantum bits) that differ from these traditional bits. A qubit can be either an electron or proton, and unlike traditional bits, can also exist in superposition states, be subjected to incompatible measurements (or interference), and even be entangled with other quantum bits, rendering them much more powerful.
What has delayed the obsolescence of traditional computers and blocked the dominance of quantum computers?
To build a quantum computer or other quantum information technologies, we need to produce quantum objects that can act as qubits and be harnessed and controlled in physical systems. Therein lies the challenge, but scientists are quietly making progress.
While the theoretical potential of quantum computing was identified decades ago, it has only begun to be realized in recent years. An accelerating, high-stakes arms race is afoot in the private and public sectors to build quantum processors and circuits capable of solving exponentially complex problems, and a growing number of working systems are in progress. Quantum computing will likely lead to a paradigm shift as it unlocks advancements in several scientific fields.
What has the government done about it?
The United States adopted the National Quantum Initiative Act in December 2018 for the first time, giving the United States a plan for advancing quantum technology and quantum computing. The National Quantum Initiative, or NQI, provided an umbrella under which government agencies could develop and operate programs for improving the climate for quantum science and technology in the U.S., coordinated by the National Quantum Coordination Office, or NQCO. Agencies include the National Institute of Standards and Technology or NIST, the National Science Foundation or NSF, and the Department of Energy or DOE. These agencies have combined to establish the Quantum Economic Development Consortium, or QED-C, a consortium of industrial, academic, and governmental entities. Five years later, Congress and the President adopted a rare bipartisan bill to reauthorize the NQIA to further accelerate quantum research and development economic and national security of the United States, with needed funding and support.
Most recently, on April 10, 2024, United States Senator Marsha Blackburn (R-TN) and Representative Elise Stefanik (R-NY) introduced the Defense Quantum Acceleration Act, which would, among other provisions, establish a quantum advisor and a new center of excellence. The preeminence of quantum computing technology within national defense initiatives just got strategic. For example, quantum-encrypted information can not be secretly intercepted, because attempting to measure a quantumproperty changes it.Similarly, in the domain of navigation, while global positioning systems or GPS can be spoofed, quantumsensors can securely relay information about location. Quantum computers have the capability of processing information infinitely faster and more complex than traditional computers.
Its still early days, but the quantum realm is heating up and rapidly evolving. While they currently face challenges such as size limitations, maintenance complexities, and error susceptibility compared to classical computers, experts envision a near-term future where quantum computing outperforms classical computing for specific tasks.
What is the potential impact of quantum technology on the U.S. economy?
Digital computers have been pivotal in information processing, but quantum computers offer a paradigm shift. With the capacity to tackle intricate statistical problems beyond current computational boundaries, quantum computing is a game changer. McKinsey projects it to contribute nearly $2.0 trillion in value by 2035. The industries most likely to see the earliest economic impact from quantum computing include automotive, chemicals, financial services, and life sciences.
A McKinsey study published in April 2024 also delves into various facets of the investment landscape within the Quantum Technology (Q.T.) sector:
Technological advancements in quantum computing have accelerated in recent years, enabling solutions to exceedingly complex problems beyond the capabilities of todays most influential classical computers. Such advancements could revolutionize various sectors, such as the chemicals, life sciences, finance and mobility sectors. The industry is poised to revolutionize, with quantum computers presenting new frontiers for personalized medicine, allowing for more accurate diagnostics and targeted treatment options. In life sciences, it could accelerate drug discovery, enable personalized medicine through genomic targeting, and revolutionize pharmaceutical research and development. In financial services, it could optimize portfolio management and risk assessment, potentially creating $622 billion in value.
Agricultural advancements enabled by quantum computing could enhance crop optimization and resource efficiency, addressing food security and climate concerns. In the automotive sector, quantum computing offers avenues for optimizing R&D, supply chain management, and production processes, reducing costs, and enhancing efficiency. Similarly, quantum computing holds promise in revolutionizing chemical catalyst design, facilitating sustainable production processes, and mitigating environmental impacts.
Where is intellectual property being created in quantum technology? Nearly 5,000 patents were granted in the area in 2022, the last period for which data is available, approximately 1% more than 2021. By January 2024, the United States had authorized and issued an aggregate of nearly 16,000 patents in the area of quantum technology (37% of the global total), Japan had over 8,600 (~20%), Germany just over 7,000, China almost at 7,000 with France closely behind. More notable perhaps are the numbers of patent applications filed globally, with the United States and China neck-and-neck at 30,099 and 28,593 as of January 2024. Strangely, and its worth thinking about why, granted patents decreased for the global top 10 players in 2021 and 2022.
The European Union has the highest number and concentration of Q.T. talent, per OECD data through 2021, with 113,000 graduates in QT-relevant fields, with India at 91,000 and China at 64,000 and the United States at 55,000. The number of universities with Q.T. programs increased 8.3% to 195, while those offering masters degrees in Q.T. increased by 10% to 55.
What are the legal considerations implicated by commercial quantum technology?
Despite the endless possibilities, legal considerations are looming with the rise of commercial quantum computing. In order to embrace the potential changes brought by quantum computing, legal experts must grasp its foundational principles, capabilities, and ramifications to maneuver through regulatory landscapes, safeguarding intellectual property rights, and resolving disputes.
Cybersecurity: Data is protected by cryptography and the use of algorithms. With exponentially higher computing power, the beginning of commercial quantum computing will require quantum cryptography that cannot be hacked. From when quantum computing becomes available to hackers until quantum cryptography can achieve ubiquity, how will we keep our networks and data safe from cyber-criminals? Can quantum-resistant cryptography protect against this obvious risk?
Privacy: Commercial enterprises will need to adopt procurement policies and implement security protocols that enable compliance with the General Directive on Privacy Regulation in Europe, the China Data Protection Act, and similar legislation in the United States, such as the California Consumer Privacy Act and its progeny. Companies that form the nucleus of our infrastructure for telecommunications, energy, water, waste, health, banking, and other essential services will need extra protection. The consequences of failure are immeasurable. How will we protect the terabytes of additional personal information that quantum computers can collect, transmit, store, analyze, monetize, and use? Existing regulations do not contemplate the gargantuan amount of personal data that will be collected, and new, sensible policies will need to be contemplated and created before the technology exists.
Competition: In the first, second, and third industrial revolutions, we saw first-movers acquire dominant market positions. The public responded by developing legislation to allow the government to break up private enterprises. How will we protect the marketplace from being dominated by a first mover in commercial quantum computing to ensure that healthy competition continues to exist?
Blockchains and smart contracts: The proliferation of quantum computing capabilities should enable greater use of distributed ledgers or blockchains to automate supply chains and commercial and financial transactions. How will they be enabled and protected? Who will be responsible if they are compromised or lost?
Cloud computing: The cloud will be disrupted. Conventional, slower computers will become obsolete when quantum computers enter the data center. Who will have access to quantum cloud computing, and when? The quantum divide could replace the digital divide.
Artificial intelligence: What will happen if quantum computing enables quantum computers to use A.I. to make decisions about people and their lives? Who will be responsible if the computer makes an error, discriminates on some algorithmic bias (e.g., profiling), or makes decisions against sound public policies?
Legal system:Quantum computing will profoundly disrupt the legal system, as it imports large scale efficiencies and speeds to processes, surpassing the capabilities of human intelligence, including that of the very best lawyers. Eventually, as quantum computing is miniaturized and placed on handheld devices, we approach singularity and a paradigm shift so profound that our entire legal system may be turned on its head.
Quantum computing embodies a future with possibilities akin to the pioneering spirit of space exploration. While classical computers retain prominence for many tasks, quantum computing offers unparalleled potential to tackle complex problems on an unprecedented scale, heralding a new era of innovation and discovery that fills us with hope and optimism. However, to fully capitalize on the potential of this tremendous technology, these kinds of legal concerns must be effectively addressed.
Image Source: Deposit Photos Author: perig76 Image ID: 241846620
More here:
Here Come the Qubits? What You Should Know About the Onset of Quantum Computing - IPWatchdog.com
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]