Since the 1940s, classical computers have improved at breakneck speed. Today you can buy a wristwatch with more computing power than the state-of-the-art, room-sized computer from half a century ago. These advances have typically come through electrical engineers ability to fashion ever smaller transistors and circuits, and to pack them ever closer together.
But that downsizing will eventually hit a physical limit as computer electronics approach the atomic level, it will become impossible to control individual components without impacting neighboring ones. Classical computers cannot keep improving indefinitely using conventional scaling.
Quantum computing, an idea spawned in the 1980s, could one day carry the baton into a new era of powerful high-speed computing. The method uses quantum mechanical phenomena to run complex calculations not feasible for classical computers. In theory, quantum computing could solve problems in minutes that would take classical computers millennia. Already, Google has demonstrated quantum computings ability to outperform the worlds best supercomputer for certain tasks.
But its still early days quantum computing must clear a number of science and engineering hurdles before it can reliably solve practical problems. More than 100 researchers across MIT are helping develop the fundamental technologies necessary scale up quantum computing and turn its potential into reality.
What is quantum computing?
It helps to first understand the basics of classical computers, like the one youre using to read this story. Classical computers store and process information in binary bits, each of which holds a value of 0 or 1. A typical laptop could contain billions of transistors that use different levels of electrical voltage to represent either of these two values. While the shape, size, and power of classical computers vary widely, they all operate on the same basic system of binary logic.
Quantum computers are fundamentally different. Their quantum bits, called qubits, can each hold a value of 0, 1, or a simultaneous combination of the two states. Thats thanks to a quantum mechanical phenomenon called superposition. A quantum particle can act as if its in two places at once, explains John Chiaverini, a researcher at the MIT Lincoln Laboratorys Quantum Information and Integrated Nanosystems Group.
Particles can also be entangled with each other, as their quantum states become inextricably linked. Superposition and entanglement allow quantum computers to solve some kinds of problems exponentially faster than classical computers, Chiaverini says.
Chiaverini points to particular applications where quantum computers can shine. For example, theyre great at factoring large numbers, a vital tool in cryptography and digital security. They could also simulate complex molecular systems, which could aid drug discovery. In principle, quantum computers could turbocharge many areas of research and industry if only we could build reliable ones.
How do you build a quantum computer?
Quantum systems are not easy to manage, thanks to two related challenges. The first is that a qubits superposition state is highly sensitive. Minor environmental disturbances or material defects can cause qubits to err and lose their quantum information. This process, called decoherence, limits the useful lifetime of a qubit.
The second challenge lies in controlling the qubit to perform logical functions, often achieved through a finely tuned pulse of electromagnetic radiation. This manipulation process itself can generate enough incidental electromagnetic noise to cause decoherence. To scale up quantum computers, engineers will have to strike a balance between protecting qubits from potential disturbance and still allowing them to be manipulated for calculations. This balance could theoretically be attained by a range of physical systems, though two technologies currently show the most promise: superconductors and trapped ions.
A superconducting quantum computer uses the flow of paired electrons called Cooper pairs through a resistance-free circuit as the qubit. A superconductor is quite special, because below a certain temperature, its resistance goes away, says William Oliver, who is an associate professor in MITs Department of Electrical Engineering and Computer Science, a Lincoln Laboratory Fellow, and the director of the MIT Center for Quantum Engineering.
The computers Oliver engineers use qubits composed of superconducting aluminum circuits chilled close to absolute zero. The system acts as an anharmonic oscillator with two energy states, corresponding to 0 and 1, as current flows through the circuit one way or the other. These superconducting qubits are relatively large, about one tenth of a millimeter along each edge thats hundreds of thousands of times larger than a classical transistor. A superconducting qubits bulk makes it easy to manipulate for calculations.
But it also means Oliver is constantly fighting decoherence, seeking new ways to protect the qubits from environmental noise. His research mission is to iron out these technological kinks that could enable the fabrication of reliable superconducting quantum computers. I like to do fundamental research, but I like to do it in a way thats practical and scalable, Oliver says. Quantum engineering bridges quantum science and conventional engineering. Both science and engineering will be required to make quantum computing a reality.
Another solution to the challenge of manipulating qubits while protecting them against decoherence is a trapped ion quantum computer, which uses individual atoms and their natural quantum mechanical behavior as qubits. Atoms make for simpler qubits than supercooled circuits, according to Chiaverini. Luckily, I dont have to engineer the qubits themselves, he says. Nature gives me these really nice qubits. But the key is engineering the system and getting ahold of those things.
Chiaverinis qubits are charged ions, rather than neutral atoms, because theyre easier to contain and localize. He uses lasers to control the ions quantum behavior. Were manipulating the state of an electron. Were promoting one of the electrons in the atom to a higher energy level or a lower energy level, he says.
The ions themselves are held in place by applying voltage to an array of electrodes on a chip. If I do that correctly, then I can create an electromagnetic field that can hold on to a trapped ion just above the surface of the chip. By changing the voltages applied to the electrodes, Chiaverini can move the ions across the surface of the chip, allowing for multiqubit operations between separately trapped ions.
So, while the qubits themselves are simple, fine-tuning the system that surrounds them is an immense challenge. You need to engineer the control systems things like lasers, voltages, and radio frequency signals. Getting them all into a chip that also traps the ions is what we think is a key enabler.
Chiaverini notes that the engineering challenges facing trapped ion quantum computers generally relate to qubit control rather than preventing decoherence; the reverse is true for superconducting-based quantum computers. And of course, there are myriad other physical systems under investigation for their feasibility as quantum computers.
Where do we go from here?
If youre saving up to buy a quantum computer, dont hold your breath. Oliver and Chiaverini agree that quantum information processing will hit the commercial market only gradually in the coming years and decades as the science and engineering advance.
In the meantime, Chiaverini notes another application of the trapped ion technology hes developing: highly precise optical clocks, which could aid navigation and GPS. For his part, Oliver envisions a linked classical-quantum system, where a classical machine could run most of an algorithm, sending select calculations for the quantum machine to run before its qubits decohere. In the longer term, quantum computers could operate with more independence as improved error-correcting codes allow them to function indefinitely.
Quantum computing has been the future for several years, Chiaverini says. But now the technology appears to be reaching an inflection point, shifting from solely a scientific problem to a joint science and engineering one quantum engineering a shift aided in part by Chiaverini, Oliver, and dozens of other researchers at MITs Center for Quantum Engineering (CQE) and elsewhere.
The rest is here:
Explained: Quantum engineering | MIT News | Massachusetts ...
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]