Antimalarial drug discovery: progress and approaches – Nature.com

Posted: September 3, 2023 at 3:22 pm

Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564594 (2002).

Article PubMed PubMed Central Google Scholar

Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 16081621 (2018).

Article PubMed Google Scholar

Lal, A. A., Rajvanshi, H., Jayswar, H., Das, A. & Bharti, P. K. Malaria elimination: using past and present experience to make malaria-free India by 2030. J. Vector Borne Dis. 56, 6065 (2019).

Article PubMed Google Scholar

World Health Organization. World Malaria Report https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (2022).

Chandramohan, D. et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N. Engl. J. Med. 385, 10051017 (2021).

Article CAS PubMed Google Scholar

Sinnis, P. & Fidock, D. A. The RTS,S vaccine-a chance to regain the upper hand against malaria? Cell 185, 750754 (2022).

Article CAS PubMed Google Scholar

Datoo, M. S. et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect. Dis. 22, 17281736 (2022).

Article CAS PubMed Google Scholar

Greenwood, B. et al. Combining malaria vaccination with chemoprevention: a promising new approach to malaria control. Malar. J. 20, 361 (2021).

Article CAS PubMed PubMed Central Google Scholar

Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Primers 3, 17050 (2017).

Article PubMed Google Scholar

Wicht, K. J., Mok, S. & Fidock, D. A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74, 431454 (2020).

Article CAS PubMed PubMed Central Google Scholar

Rasmussen, C., Alonso, P. & Ringwald, P. Current and emerging strategies to combat antimalarial resistance. Expert Rev. Anti Infect. Ther. 20, 353372 (2022).

Article CAS PubMed Google Scholar

Achan, J. et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J. 10, 144 (2011).

Article CAS PubMed PubMed Central Google Scholar

White, N. J. Qinghaosu (artemisinin): the price of success. Science 320, 330334 (2008).

Article CAS PubMed Google Scholar

Plowe, C. V. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar. J. 21, 104 (2022).

Article PubMed PubMed Central Google Scholar

van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952961 (2019).

Article PubMed PubMed Central Google Scholar

Dhorda, M., Amaratunga, C. & Dondorp, A. M. Artemisinin and multidrug-resistant Plasmodium falciparum a threat for malaria control and elimination. Curr. Opin. Infect. Dis. 34, 432439 (2021).

Article CAS PubMed PubMed Central Google Scholar

Uwimana, A. et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26, 16021608 (2020). Reported the identification of artemisinin partial resistance emerging in African parasites.

Article CAS PubMed PubMed Central Google Scholar

Uwimana, A. et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 21, 11201128 (2021).

Article CAS PubMed PubMed Central Google Scholar

Balikagala, B. et al. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 11631171 (2021). Reports clinical evidence that mutant Kelch13 alleles emerging independently in Uganda were associated with prolonged parasite clearance half-lives in patients with P. falciparum infection treated with artesunate.

Article CAS PubMed Google Scholar

Straimer, J., Gandhi, P., Renner, K. C. & Schmitt, E. K. High prevalence of Plasmodium falciparum K13 mutations in Rwanda is associated with slow parasite clearance after treatment with artemether-lumefantrine. J. Infect. Dis. 225, 14111414 (2021).

Article PubMed Central Google Scholar

Tumwebaze, P. K. et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 13, 6353 (2022).

Article CAS PubMed PubMed Central Google Scholar

Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 5055 (2014).

Article PubMed Google Scholar

Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411423 (2014).

Article PubMed PubMed Central Google Scholar

Siddiqui, F. A., Liang, X. & Cui, L. Plasmodium falciparum resistance to ACTs: emergence, mechanisms, and outlook. Int. J. Parasitol. Drugs Drug Resist. 16, 102118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428431 (2015).

Article CAS PubMed Google Scholar

Siddiqui, F. A. et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J. Infect. Dis. 218, 434442 (2018).

Article CAS PubMed PubMed Central Google Scholar

Yang, T. et al. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 29, 29172928 (2019).

Article CAS PubMed Google Scholar

Birnbaum, J. et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367, 5159 (2020). This study identified the role of proteins (including K13) in ART resistance and their functional association with reduced haemoglobin endocytosis, a mechanism important for ART activation.

Article CAS PubMed Google Scholar

Posner, G. H. et al. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J. Med. Chem. 37, 12561258 (1994).

Article CAS PubMed Google Scholar

Mok, S. et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431435 (2015).

Article CAS PubMed Google Scholar

Hott, A. et al. Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrob. Agents Chemother. 59, 31563167 (2015).

Article CAS PubMed PubMed Central Google Scholar

Xie, S. C., Ralph, S. A. & Tilley, L. K13, the cytostome, and artemisinin resistance. Trends Parasitol. 36, 533544 (2020).

Article CAS PubMed Google Scholar

Reyser, T. et al. Identification of compounds active against quiescent artemisinin-resistant Plasmodium falciparum parasites via the quiescent-stage survival assay (QSA). J. Antimicrob. Chemother. 75, 28262834 (2020).

Article CAS PubMed Google Scholar

Connelly, S. V. et al. Restructured mitochondrial-nuclear interaction in Plasmodium falciparum dormancy and persister survival after artemisinin exposure. mBio 12, e0075321 (2021).

Article PubMed Google Scholar

Mok, S. et al. Artemisinin-resistant K13 mutations rewire Plasmodium falciparums intra-erythrocytic metabolic program to enhance survival. Nat. Commun. 12, 530 (2021).

Article CAS PubMed PubMed Central Google Scholar

Imwong, M. et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect. Dis. 20, 14701480 (2020).

Article CAS PubMed PubMed Central Google Scholar

Stokes, B. H. et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 10, e66277 (2021).

Article CAS PubMed PubMed Central Google Scholar

Stokes, B. H., Ward, K. E. & Fidock, D. A. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 386, 13851386 (2022). Laboratory P. falciparum Dd2 parasites edited with kelch13 mutations A675V or C469Y (observed in clinical isolates from Africa) alone showed only marginally reduced susceptibility to dihydroartemisinin, suggesting that high-level resistance to treatment with an artemisinin derivative must include additional mutations.

Article PubMed PubMed Central Google Scholar

Demas, A. R. et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc. Natl Acad. Sci. USA 115, 1279912804 (2018).

Article CAS PubMed PubMed Central Google Scholar

Sharma, A. I. et al. Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genet. 16, e1009266 (2020).

Article CAS PubMed PubMed Central Google Scholar

Henrici, R. C., van Schalkwyk, D. A. & Sutherland, C. J. Modification of pfap2mu and pfubp1 markedly reduces ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01542-19 (2019).

Article PubMed PubMed Central Google Scholar

Amambua-Ngwa, A. et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science 365, 813816 (2019). Important analysis of genetic population of P. falciparum clinical isolate samples in African continent revealing shared genomic haplotypes associated with antimalarial resistance.

Article CAS PubMed Google Scholar

Masserey, T. et al. The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. eLife https://doi.org/10.7554/eLife.77634 (2022).

Article PubMed PubMed Central Google Scholar

Imwong, M. et al. Evolution of multidrug resistance in Plasmodium falciparum: a longitudinal study of genetic resistance markers in the Greater Mekong subregion. Antimicrob. Agents Chemother. 65, e0112121 (2021).

Article PubMed Google Scholar

Amato, R. et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17, 164173 (2017).

Article CAS PubMed Google Scholar

Witkowski, B. et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect. Dis. 17, 174183 (2017).

Article CAS PubMed PubMed Central Google Scholar

Chugh, M. et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 53925397 (2013).

Article CAS PubMed PubMed Central Google Scholar

Rathore, I. et al. Activation mechanism of plasmepsins, pepsin-like aspartic proteases from Plasmodium, follows a unique trans-activation pathway. FEBS J. 288, 678698 (2021).

Article CAS PubMed Google Scholar

Bopp, S. et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat. Commun. 9, 1769 (2018).

Article PubMed PubMed Central Google Scholar

Dhingra, S. K. et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. mBio 8, e00303-17 (2017).

Article PubMed PubMed Central Google Scholar

Ross, L. S. et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat. Commun. 9, 3314 (2018).

Read the rest here:

Antimalarial drug discovery: progress and approaches - Nature.com

Related Posts