Page 884«..1020..883884885886..890900..»

Category Archives: Transhuman News

Limit Your Sugar And Fat Intake Before It Takes A Toll On Your Skin And Lead To Psoriasis – TheHealthSite

Posted: July 5, 2021 at 5:51 am

A new study has found that eating a diet high in sugar and fat can increase your risk of developing autoimmune disorders like psoriasis. Read on to know if it can be reversed.

Written by Arushi Bidhuri | Published : June 30, 2021 6:22 PM IST

Food is one of the most modifiable factors that help regulate gut microbiota where a population of bacteria live in the intestines. And what you eat is important to maintain a healthy gut and keep diseases at bay. Studies have shown that eating too much sugar or foods rich in fat can be bad for your health. This is what experts have termed a Western diet. A study published in the Journal of Investigative Dermatology has found that eating a diet high in sugar and fat causes an imbalance in the gut's microbial flora, which can lead to inflammatory skin disorders like psoriasis.

Sam T. Hwang, professor and chair of dermatology at UC Davis and senior author on the study said that previous research has shown that a Western diet rich in sugar and fat can cause substantial skin inflammation and psoriasis flare-ups. He further added, "Despite having powerful anti-inflammatory drugs for the skin condition, our study indicates that simple changes in diet may also have significant effects on psoriasis."

Psoriasis is a skin disorder in which cells accumulate on the surface of the skin, resulting in itchy, dry, and painful red areas. It occurs when the immune cells mistakenly attack healthy cells and cause skin inflammation and the formation of scaly and red patches on the skin.

The microbial population and functions of the gut can alter quickly when you eat a Western diet. Dysbiosis, or a change in microbial equilibrium, contributes to gut inflammation. Since bacteria in the stomach may play a major role in determining inflammation, the researchers sought to see if intestinal dysbiosis impacts skin and joint inflammation.

For the study, the researchers investigated the effects of food on psoriasis and psoriatic arthritis using a mouse model. Interleukin-23 (IL-23) minicircle DNA was delivered into mice to produce a reaction that mimicked psoriasis-like skin and joint disorders. As per the study, many inflammatory autoimmune responses, such as psoriasis and inflammatory bowel disease, are caused by the protein IL-23, which is produced by immune cells (IBD). They found that eating a Western diet for the short term is enough to create microbial imbalance and increase vulnerability to IL 23-meditated psoriasis-like skin inflammation. "There is a clear link between skin inflammation and changes in the gut microbiome due to food intake," Hwang said. "The bacterial balance in the gut disrupted shortly after starting a Western diet, and worsened psoriatic skin and joint inflammation."

Despite the presence of IL-23 inflammatory proteins, the researchers sought to see if moving to a balanced diet might help restore the gut flora. They gave mice a Western diet for six weeks before generating psoriasis and psoriatic arthritis symptoms with an IL-23-producing chemical. The mice were then randomly separated into two groups: one that ate a Western diet for another four weeks, and another that ate a balanced diet for the same amount of time.

Their research found that mice that ate a high-sugar, high-fat diet for 10 weeks were prone to skin and joint inflammation. Mice that were shifted to a balanced diet had less skin scaling and thinner ears than mice who were on a Western diet. The reduction in skin inflammation in mice fed a Western diet suggests that the Western diet has a short-term effect on skin inflammation. This implies that dietary modifications might partially restore the proinflammatory effects of the Western diet as well as the altering of gut flora.

(with inputs from agencies)

Join us on

Read this article:
Limit Your Sugar And Fat Intake Before It Takes A Toll On Your Skin And Lead To Psoriasis - TheHealthSite

Posted in Psoriasis | Comments Off on Limit Your Sugar And Fat Intake Before It Takes A Toll On Your Skin And Lead To Psoriasis – TheHealthSite

A case of psoriasis successfully treated by extracorporeal photopheresis during COVID-19 pandemic – DocWire News

Posted: at 5:51 am

This article was originally published here

Transfus Apher Sci. 2021 Jun 26:103200. doi: 10.1016/j.transci.2021.103200. Online ahead of print.

ABSTRACT

Psoriasis is a chronic inflammatory skin disease that is characterized by well-demarcated erythematous plaques with a silver scale. Although many new and emerging therapeutic agents are often sufficient to control the disease, there is still a need for alternative treatment options in challenging cases. Extracorporeal photopheresis (ECP) has been applied to many T-cell-mediated diseases to restore immune homeostasis and treat psoriasis effectively. In this paper, we present a psoriasis patient who did not respond to methotrexate, narrowband ultraviolet B, or acitretin. Because of a diagnosis of non-Hodgkin lymphoma, the patient had contraindications for cyclosporine, fumaric acid esters, and biologics but achieved remission with a total of 12 sessions of ECP in two and a half months. Although exacerbation was recorded after polymerase chain reaction (PCR) confirmed coronavirus 2019 (COVID-19) disease infection at the end of the first month, scores from the psoriasis area severity index (PASI) and dermatological life quality index (DLQI) were regressed significantly within two and a half months. ECP seems to provide an effective and rapid response for psoriasis and should be considered for psoriasis patients who fail to respond or have contraindications to existing treatments.

PMID:34215520 | DOI:10.1016/j.transci.2021.103200

Read this article:
A case of psoriasis successfully treated by extracorporeal photopheresis during COVID-19 pandemic - DocWire News

Posted in Psoriasis | Comments Off on A case of psoriasis successfully treated by extracorporeal photopheresis during COVID-19 pandemic – DocWire News

Switching diet promotes healthy skin and joints, say scientists – NutraIngredients.com

Posted: at 5:51 am

Around 30% of patients with psoriasis also develop psoriatic arthritis with symptoms such as joint pain, stiffness and swelling.

The Western Diet (WD), in particular, can lead to a rapid and detrimental impact on microbial community and function, contributing to systemic inflammation and other metabolically compromised phenotypes, the authors write.

Among the numerous factors known to influence gut microbiota composition, dietary composition has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota.

Tests have shown that a diet rich in sugar and fat induce spontaneous skin inflammation and therefore increase the odds of developing psoriasiform dermatitis (PsD). Gut microbiota is known to play a key part in controlling inflammation. Disruption of gut microbiome by external factors, such as a poor diet, promotes overproduction of harmful pathogens, destabilizes the immune system, and subsequently leads to inflammatory disease.

Perturbation of the gut microbiome by environmental factors such as diet promotes the overgrowth of harmful pathobionts, disrupts immune homeostasis, and leads to the development of inflammatory diseases, they explain.

The team used a mouse model to study the effects of WD on microbial imbalance (dysbiosis) and associated skin and joint inflammation. They also analysed whether dietary changes could reverse symptoms of dysbiosis.

The study included two groups of mice that were exposed to a short-term WD or Chow diet (CD) and subsequently injected with 10 g of interleukin-23 minicircle DNA (IL-23 MC DNA) - a protein linked to inflammatory autoimmune reactions - to induce psoriasis-like skin and joint conditions. The effects of IL-23 exposure were analysed and the results recorded.

Initial findings revealed the CD-fed group developed psoriatic inflammation but presented no other noteworthy symptoms. However, the second group (fed a WD) developed severe gut problems and the majority perished after two weeks. The IL-23 MC DNA dose was halved as a result, to ensure the WD-fed mice would tolerate treatment.

After a further six weeks on their respective diets the two groups were injected with IL-23 MC DNA or with a control. Their diets were maintained for another four weeks.

The researchers noted that after six weeks (before MC DNA delivery) the mice on the WD gained more weight than CD-fed mice and at 10 weeks WD intake led to higher weight gain in the control group. There was no significant weight gain in the IL-23 MC DNA treated mice.

Erythema (skin rash) and scaling were observed in the WD + IL-23 MC DNA group but were considerably milder in the CD + IL-23 MC DNA group and absent in the control. The control group also exhibited the least amount of ear swelling.

The data suggests that a WD can lead to increased intestinal permeability (or leaking gut), which has previously been observed in autoimmune diseases, including psoriasis. A loss of microbial diversity was also observed in WD-fed mice. Thus, the authors surmise that modulating gut microbiota was a viable option to help regulate intestinal permeability and control psoriatic inflammation.

Crucially, the researchers observed that a more balanced (CD) diet helped reduce gut dysbiosis and helped restore some balance to the gut microbiome.

Mice that were switched from a WD to a CD after 10 weeks had less scaling and reduced ear and epidermal thickness, compared with those that remained on the WD.

The researchers therefore concluded that the proinflammatory effects of a WD could be partially reversed with dietary changes.

Source: Journal of Investigative Dermatology

Authors: Zhenrui Shi, Xuesong Wu, Clarissa Santos Rocha, Yu-Jui Yvonne Wan, Satya Dandekar, Samuel T. Hwang

Short-Term Western Diet Intake Promotes IL-23-Mediated Skin and Joint Inflammation Accompanied by Changes to the Gut Microbiota in Mice

doi.org/10.1016/j.jid.2020.11.032

See original here:
Switching diet promotes healthy skin and joints, say scientists - NutraIngredients.com

Posted in Psoriasis | Comments Off on Switching diet promotes healthy skin and joints, say scientists – NutraIngredients.com

Cellular Model of a Developing Mouse Is Built With Spatial Resolution – Technology Networks

Posted: July 2, 2021 at 8:49 pm

A new technique called sci-Space, combined with data from other technologies, could lead to four-dimensional atlases of gene expression across diverse cells during embryonic development of mammals.

Such atlases would map how the gene transcripts in individual cells reflect the passage of time, cell lineages, cell migration, and location on the developing embryo. They would also help illuminate the spatial regulation of gene expression.

Mammalian embryonic development is a remarkable phenomenon: a fertilized egg divides repeatedly and turns, in a matter of weeks or months, into a complex organism capable of a myriad of physiological processes and composed of a variety of cells, tissues, organs, anatomical structures.

A better understanding of how mammals form before birth -- particularly the prenatal spatial patterns of gene expression at a single-cell level during embryonic development -- could advance biomedical and veterinary research on a variety of conditions. These range from inherited disorders to congenital malformations and developmental delays. Understanding how organs originate might also assist future regenerative medicine efforts.

An international team led by scientists at UW Medicine, Howard Hughes Medical Institute and the Brotman Baty Institute for Precision Medicine in Seattle demonstrated the proof-of-concept of their sci-Space technique in mouse embryos.

Their results are published in the July 2 edition of Science. The lead authors are Sanjay R. Srivatsan of the Department of Genome Sciences at the University of Washington School of Medicine, and Mary C. Regier of the UW Department of Bioengineering.

The senior authors are Jay Shendure, UW Medicine professor of genome sciences, and director of the Brotman Baty Institute, and an investigator at the Allan Discovery Center for Cell Lineage Tracing; Kelly R. Stevens, UW assistant professor of bioengineering; and Cole Trapnell, associate professor of genome sciences. Regier and Stevens are also investigators at the UW Medicine Institute for Stem Cell and Regenerative Medicine Research.

The researchers observed the orchestration of genes in 120,000 cell nuclei. All the body's somatic cells contain the same DNA code. The researchers captured information on which genes were turned on or off in these nuclei as mouse embryos took shape. The scientists also investigated how cells' locations in an embryo affected which genes were activated during development.

This technique builds on previous work in which these scientists and other groups developed ways of conducting whole-organism profiling of gene expression and DNA-code accessibility, in thousands of single cells, during embryonic development. They did so to track the emergence and trajectory of various cell types.

How cells are organized spatially - what physical positions they take as an embryo forms - is critical to normal development. Misplacements, disruptions, or cells not showing at the right time in the right spot can cause serious problems or even prenatal death.

However, gaining knowledge on spatial patterns of gene expression has been technically difficult. It has been unwieldy to assay gene transcripts of individual cells over wide swaths of the embryo. This limited the scientific understanding of how spatial organization influences gene expression and, consequently, why which cell types form where, or how neighboring groups of cells influence each other's future roles.

The scientists on the present study had earlier developed a method to label cell nuclei, a technique they called sci-Plex. They then went on to index single-cell RNA sequencing, with a method called sci-RNA-sequencing.

Now, with sci-Space, by analyzing spatial coordinates and cell gene transcripts the scientists identified thousands of genes whose expression was anatomically patterned. For example, certain genetic profiles emerged in neurons in the brain and spinal cord and others in cardiac muscle cells in the heart.

The scientists also used spatial and gene profile information to annotate subtypes of cells. For example, while both blood vessel cells and heart muscle might both express the gene for a particular growth factor, only the heart muscle cells produced certain growth factor receptors.

The researchers also observed that cell types varied greatly in the extent of their spatial patterning of gene expression. For example, connective tissue progenitor cells showed a relatively large proportion of spatially restricted gene expression. This observation suggests that subtypes of these cells behave in a position-dependent manner throughout the body.

To measure the power of spatial position on a cell type's gene transcript profile, the researchers also calculated the physical distance between cells and the angular distance of their gene expression profiles.

"For many cell types, as the physical distance between cells increased, so did the angular distance between their transcriptomes," the researchers noted in their paper. However, they added that this trend varied considerably. It was most pronounced in certain brain and spinal cord cells.

The genetic transcript profiles of some other cell types were highly influenced by their position in the developing embryo. Among these are certain cartilage cells, which become part of the scaffolding for bones of the head and face.

The researchers also studied gene expression dynamics that took place as part of brain cell differentiation and migration during mouse embryonic development. The researchers examined how various brain cell trajectories were anatomically distributed. The researchers did so by using the Allen Institute's Anatomical Reference Brain Atlas as a guide.

"Cells from each trajectory overwhelmingly occupied distinct brain regions," the researchers noted. They also observed gradients of developmental maturity in different regions of the brain. These gradients revealed both known and new patterns of migration.

In the future, the researchers hope sci-Space will be further applied to serial sections that span the entire mouse embryo and that cover many points of time.

Reference:Srivatsan SR, Regier MC, Barkan E, et al. Embryo-scale, single-cell spatial transcriptomics. Science. 2021;373(6550):111-117. doi:10.1126/science.abb9536

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

See more here:
Cellular Model of a Developing Mouse Is Built With Spatial Resolution - Technology Networks

Posted in Gene Medicine | Comments Off on Cellular Model of a Developing Mouse Is Built With Spatial Resolution – Technology Networks

Atsena Therapeutics Receives Orphan Drug Designation from – GlobeNewswire

Posted: at 8:49 pm

DURHAM, N.C., June 28, 2021 (GLOBE NEWSWIRE) -- Atsena Therapeutics, a clinical-stage gene therapy company focused on bringing the life-changing power of genetic medicine to reverse or prevent blindness, today announced that the U.S. Food and Drug Administration (FDA) has granted orphan drug designation for its investigational gene therapy product for the treatment of GUCY2D-associated Leber congenital amaurosis (LCA1), a genetic eye disease that affects the retina. The safety and efficacy of the gene therapy are being evaluated in a Phase I/II clinical trial, which is currently enrolling patients (ClinicalTrials.gov Identifier: NCT03920007).

Receiving orphan drug designation from the FDA is an important milestone for our LCA1 gene therapy clinical program, said Kenji Fujita, MD, Chief Medical Officer of Atsena. We look forward to the continued progression of our Phase I/II clinical trial as we seek to develop a new treatment for children and adults who have severe visual impairment or blindness due to GUCY2D-associated LCA1.

The FDA may grant orphan drug designation to drugs and biologics intended to treat diseases or conditions that affect fewer than 200,000 people in the U.S. Orphan drug designation provides certain benefits, such as tax credits for qualified clinical testing, exemptions from certain FDA application fees, and seven years of market exclusivity, if approved.

Atsenas LCA1 program is based on more than 15 years of research conducted at the University of Florida. The company exclusively licensed the rights to the gene therapy from Sanofi, which originally licensed it from University of Florida.

About LCA1Leber congenital amaurosis (LCA) is the most common cause of blindness in children. LCA1 is caused by mutations in the GUCY2D gene and results in early and severe vision impairment or blindness. GUCY2D-LCA1 is one of the most common forms of LCA, affecting roughly 20 percent of patients who live with this inherited retinal disease.

About Atsena TherapeuticsAtsena Therapeutics is a clinical-stage gene therapy company developing novel treatments for inherited forms of blindness. The companys ongoing Phase I/II clinical trial is evaluating a potential therapy for one of the most common causes of blindness in children. Its additional pipeline of leading preclinical assets is powered by an adeno-associated virus (AAV) technology platform tailored to overcome significant hurdles presented by inherited retinal disease, and its unique approach is guided by the specific needs of each patient condition to optimize treatment. Founded by ocular gene therapy pioneers Dr. Shannon Boye and Sanford Boye of the University of Florida, Atsena is based in North Carolinas Research Triangle, an environment rich in gene therapy expertise. For more information, please visitatsenatx.com.

Media Contact:Tony Plohoros6 Degrees(908) 591-2839tplohoros@6degreespr.com

Business Contact:info@atsenatx.com

Go here to see the original:
Atsena Therapeutics Receives Orphan Drug Designation from - GlobeNewswire

Posted in Gene Medicine | Comments Off on Atsena Therapeutics Receives Orphan Drug Designation from – GlobeNewswire

AGC Biologics expands further in Colorado with purchase of Novartis Gene Therapies plant – FiercePharma

Posted: at 8:49 pm

As the cell and gene revolution heats up, contract manufacturer AGC Biologics is getting ahead of the curve with plans for its second commercial plant in Colorado.

Angling to bolster cell and gene production, AGC has clinched a deal for a commercial Novartis Gene Therapies factory in Longmont, Colorado. Located just 16 miles from AGCs 20,000-liter mammalian facility in Boulder, the new plant is expected to add significant additional capacity, AGC said in a release.

The move comes shortly after AGC charted an expansion at its cell and gene site in Milan, Italy, which it snared last July in its buyout of Italian CTG biotech Molecular Medicine (MolMed).

AGC hasnt divulged the Novartis plants price. The company didnt say how big it expects the Longmont workforce to be, but it will [aim] to hire a significant percentage of Novartis staff there.

RELATED:Novavax enlists AGC Biologics to manufacture adjuvant for COVID-19 shot

The 622,000-square-foot factory comes equipped with offices and production space across six buildings. It sits on a 229-acre campus located 40 miles north of Denver, AGC said.

Last June,AGC got its hands on its Boulder plant through similar means, picking up the commercial facility from AstraZeneca. That facility came equipped with two 20,000-liter stainless steel bioreactors, plusspace to add four more in the future. That same month, AGC tied up with Novavax to scale up and produce the Matrix-M adjuvant for its late-stage COVID-19 vaccine candidate,NVX-CoV2373.

Meanwhile, AGC has invested heavily in cell and gene therapiessince acquiring MolMed in 2020. With the addition of two MolMed commercial plants in Italy, AGC became one of the very few CDMOs to include both plasmid production and end-to-end cell and gene therapy services in its manufacturing repertoire, the company noted last year.

RELATED:AGC plots $194.5M, capacity-doubling upgrade to Copenhagen biologics site

At the time, AGC specifically highlighted MolMeds manufacturing know-how in genetically modified cells and viral vectors, or the engineered viruses used to deliver the cutting-edge medicines. That component, which is also used in AstraZeneca and Johnson & Johnsons recombinant COVID-19 vaccines, is already in shortage, with the bottleneck expected to tighten even more unless regulators, biopharmas and contractors move fast to address production shortfalls, GlobalDatasaid in a recent report.

And in March, AGC blueprinted an upgrade to its factory in Milan, sketching a capacity boost and the introduction of viral vector suspension capabilities. The expanded facilities should startfull operations in 2022, AGC has said.

Read the rest here:
AGC Biologics expands further in Colorado with purchase of Novartis Gene Therapies plant - FiercePharma

Posted in Gene Medicine | Comments Off on AGC Biologics expands further in Colorado with purchase of Novartis Gene Therapies plant – FiercePharma

BioMarin Announces 12 Presentations at the International Society on Thrombosis and Haemostasis (ISTH) 2021 Virtual Congress – BioSpace

Posted: at 8:49 pm

SAN RAFAEL, Calif., July 2, 2021 /PRNewswire/ --BioMarin Pharmaceutical Inc.(NASDAQ: BMRN) today announced three oral presentations and nine poster presentations related to valoctocogene roxaparvovec, an investigational gene therapy for the treatment of adults with severe hemophilia A, at the International Society on Thrombosis and Haemostasis (ISTH) 2021 Virtual Congress being held July 17-21, 2021. Notably, these presentations will include highlights from the Phase 3 GENEr8-1 trial, the largest gene therapy trial in Hemophilia A, and five years of clinical follow-up from the Phase 1/2 study, both of which continue to demonstrate prolonged hemostatic efficacy without the need for other treatment for hemophilia A.

"We are proud of the consistent and dramatic bleed control results to date, based on both long-term extension studies of at least five years, and the largest and most definitive gene therapy study in Hemophilia A. We look forward to the scientific presentations of the growing body of evidence for valoctocogene roxaparvovec and ensuing discussions at this important meeting," saidHank Fuchs, M.D., President, Worldwide Research and Development at BioMarin.

BioMarin's presentations at ISTH include:

Platform Presentations

Efficacy and Safety of Valoctocogene Roxaparvovec Adeno-associated Virus Gene Transfer for Severe Hemophilia A: Results from the Phase 3 GENEr8-1 TrialProfessor Margareth C. Ozelo, Hematology and Transfusion Medicine,Internal Medicine Department - School of Medical Sciences of UNICAMP,University of Campinas-UNICAMPMonday, July 19, 2021, 10-11 AM EDT

Hemostatic Response is Maintained for up to 5 Years Following Treatment with Valoctocogene Roxaparvovec, an AAV5-hFVIII-SQ Gene Therapy for Severe Hemophilia AProfessor Michael Laffan, faculty of Medicine, Department of Immunology and Inflammation at Imperial College London, Director of the Hammersmith Hospital Haemophilia CentreWednesday, July 21, 2021, 10-11 AM EDT

Investigation of Early Outcomes Following Adeno-associated Viral Gene Therapy in a Canine Hemophilia ModelDr. Paul Batty, Department of Pathology and Molecular Medicine, Queen's UniversityWednesday, July 21, 2021, 1-2 PM EDT

Poster Presentations

Poster #

Title and Authors

LPB0022

Global seroprevalence of pre-existing immunity against various AAV serotypes in people with haemophilia A

Klamroth R, Hayes G, Andreeva T, Suzuki T, Hardesty B, Shima M, Pollock T, Slev P, Oldenburg J, Ozelo M, Castet S, Mahlangu J, Peyvandi F, Kazmi R, Leavitt A, Callaghan M, Pan-Petesch B, Quon D, Li M, Wong WY.

PB0663

A savvy approach in clinical trial recruitment for the SAAVY (Seroprevalence of AAV AntibodY) study in the era of COVID-19: Designing for a prospective, observational study in the United States during a global pandemic

Valentino L, Vaghela M, Lauw M, Dela Cerda G, Jones M, Hinds D, Newman V, Leal-Padinas F, Rotellini D, Schafer K, Pipe S.

PB0488

Exploring the level of congruence between patient- and physician-reported anxiety and depression in persons with haemophilia A

Burke T, Shaikh A, Pedra G, Hawes C, Camp C, O'Hara J.

PB0468

Examination and validation of a patient-centric joint metric: "PROBLEM JOINT"; empirical evidence from the CHESS Paediatrics dataset

Burke T, Rodriguez-Santana I, O'Hara J, Chowdary P, Curtis R, Khair K, McLlaughlin P, Noone D, O'Mahoney B, Pasi J, Skinner M.

PB0452

Real-world clinical and patient-centric outcomes in people with haemophilia A in France: Combined findings from the CHESS and CHESS II studies

Shaikh A, Burke T, Hawes C, Duport G, O'Hara J, Camp C.

PB0487

Real-world clinical and patient-centric outcomes in people with haemophilia A in Germany: Combined findings from the CHESS and CHESS II studies

Shaikh A, Burke T, Hawes C,Becker T, Brandt S, O'Hara J, Camp C.

PB0464

Real-world clinical and patient-centric outcomes in people with haemophilia A in Italy: Combined findings from the CHESS and CHESS II studies

Shaikh A, Burke T, Hawes C, Lupi A, O'Hara J, Camp C.

PB0456

Real-world clinical and patient-centric outcomes in people with haemophilia A in Spain: Combined findings from the CHESS and CHESS II studies

Shaikh A, Burke T, Hawes C, O'Hara J, Camp C.

PB0479

Real-world clinical and patient-centric outcomes in people with haemophilia A in the United Kingdom: Combined findings from the CHESS and CHESS II studies

Shaikh A, Burke T, Hawes C, McKeown W, Morgan D, O'Hara J, Camp C.

Founded in 1969, the ISTH is the leading worldwide not-for-profit organization dedicated to advancing the understanding, prevention, diagnosis and treatment of thrombotic and bleeding disorders. The ISTH is an international professional membership organization with more than 7,700 clinicians, researchers and educators working together to improve the lives of patients in more than 110 countries around the world. Among its highly regarded activities and initiatives are education and standardization programs, research activities, meetings and congresses, peer-reviewed publications, expert committees and World Thrombosis Day on 13 October.

Regulatory Status

BioMarin resubmitted a Marketing Authorization Application (MAA) to the European Medicines Agency (EMA) on June 25, 2021. In May 2021, the EMA granted the Company's request for accelerated assessment. Accelerated assessment potentially reduces the time frame for the EMA Committee for Medicinal Products for Human Use (CHMP) and Committee for Advanced Therapies (CAT) to review a MAA for an Advanced Therapy Medicinal Product (ATMP). A CHMP opinion is anticipated in the first half of 2022.

The MAA submission includes safety and efficacy data from the 134 subjects enrolled in the Phase 3 GENEr8-1 study, all of whom have been followed for at least one year after treatment with valoctocogene roxaparvovec, as well as four and three years of follow-up from the 6e13 vg/kg and 4e13 vg/kg dose cohorts, respectively, in the ongoing Phase 1/2 dose escalation study.

In the United States, BioMarin intends to submit two-year follow-up safety and efficacy data on all study participants from the Phase 3 GENEr8-1 study to support the benefit/risk assessment of valoctocogene roxaparvovec, as previously requested by the Food and Drug Administration (FDA). BioMarin is targeting a Biologics License Application (BLA) resubmission in the second quarter of 2022, assuming favorable study results, followed by an expected six-month review by the FDA.

The FDA granted Regenerative Medicine Advanced Therapy (RMAT) designation to valoctocogene roxaparvovec inMarch 2021. RMAT is an expedited program intended to facilitate development and review of regenerative medicine therapies, such as valoctocogene roxaparvovec, that are intended to address an unmet medical need in patients with serious conditions. The RMAT designation is complementary to Breakthrough Therapy Designation, which the Company received in 2017.

In addition to the RMAT Designation and Breakthrough Therapy Designation, BioMarin's valoctocogene roxaparvovec also has received orphan drug designation from the FDA and EMA for the treatment of severe hemophilia A.The Orphan Drug Designation program is intended to advance the evaluation and development of products that demonstrate promise for the diagnosis and/or treatment of rare diseases or conditions.

Robust Clinical Program

BioMarin has multiple clinical studies underway in its comprehensive gene therapy program for the treatment of hemophilia A. In addition to the global Phase 3 study GENEr8-1 and the ongoing Phase 1/2 dose escalation study, the Company is actively enrolling participants in a Phase 3b, single arm, open-label study to evaluate the efficacy and safety of valoctocogene roxaparvovec at a dose of 6e13 vg/kg with prophylactic corticosteroids in people with hemophilia A. The Company is also running a Phase 1/2 Study with the 6e13 vg/kg dose of valoctocogene roxaparvovec in people with hemophilia A with pre-existing AAV5 antibodies, as well as another Phase 1/2 Study with the 6e13 vg/kg dose of valoctocogene roxaparvovec in people with hemophilia A with active or prior FVIII inhibitors.

About Hemophilia A

People living with hemophilia A lack sufficient functioning Factor VIII protein to help their blood clot and are at risk for painful and/or potentially life-threatening bleeds from even modest injuries. Additionally, people with the most severe form of hemophilia A (FVIII levels <1%) often experience painful, spontaneous bleeds into their muscles or joints. Individuals with the most severe form of hemophilia A make up approximately 45 to 50 percent of the hemophilia A population. People with hemophilia A with moderate (FVIII 1-5%) or mild (FVIII 5-40%) disease show a much-reduced propensity to bleed. The standard of care for adults with severe hemophilia A is a prophylactic regimen of replacement Factor VIII infusions administered intravenously up to two to three times per week or 100 to 150 infusions per year. Despite these regimens, many people continue to experience breakthrough bleeds, resulting in progressive and debilitating joint damage, which can have a major impact on their quality of life.

Hemophilia A, also called Factor VIII deficiency or classic hemophilia, is an X-linked genetic disorder caused by missing or defective Factor VIII, a clotting protein. Although it is passed down from parents to children, about 1/3 of cases are caused by a spontaneous mutation, a new mutation that was not inherited. Approximately 1 in 10,000 people have Hemophilia A.

About BioMarin

BioMarin is a global biotechnology company that develops and commercializes innovative therapies for patients with serious and life-threatening rare and ultra-rare genetic diseases. The company's portfolio consists of six commercialized products and multiple clinical and pre-clinical product candidates. For additional information, please visitwww.biomarin.com. Information on BioMarin's website is not incorporated by reference into this press release.

Forward Looking Statement

This press release contains forward-looking statements about the business prospects of BioMarin Pharmaceutical Inc., including without limitation, statements about: (i) the development of BioMarin's valoctocogene roxaparvovec program generally, (ii) the impact of valoctocogene roxaparvovec gene therapy for treating patients with severe hemophilia A, (iii) the anticipated timing of a CHMP opinion in the first half of 2022, (iv) our plans in the U.S. to submit two-year follow-up safety and efficacy data on all study participants from the GENEr8-1 study in response to FDA's request for these data to support their benefit-risk assessment of valoctocogene roxaparvovec, (v) our target Biologics License Application (BLA) submission date in the second quarter of 2022, assuming favorable study results, followed by an expected six-month review procedure by the FDA, and (vi) the potential approval and commercialization of valoctocogene roxaparvovec for the treatment of severe hemophilia A, including timing of such approval decisions.

These forward-looking statements are predictions and involve risks and uncertainties such that actual results may differ materially from these statements. These risks and uncertainties include, among others: results and timing of current and planned preclinical studies and clinical trials of valoctocogene roxaparvovec, including final analysis of the above interim data; any potential adverse events observed in the continuing monitoring of the patients in the Phase 1/2 trial; the content and timing of decisions by the FDA, the European Commission and other regulatory authorities, including the potential impact of the COVID-19 pandemic on the regulatory authorities' abilities to issue such decisions and the timing of such decisions; the content and timing of decisions by local and central ethics committees regarding the clinical trials; BioMarin's ability to successfully manufacture valoctocogene roxaparvovec; and those other risks detailed from time to time under the caption "Risk Factors" and elsewhere in BioMarin's Securities and Exchange Commission (SEC) filings, including BioMarin's Quarterly Report on Form 10-Q for the quarter endedMarch 31, 2021, and future filings and reports by BioMarin. BioMarin undertakes no duty or obligation to update any forward-looking statements contained in this press release as a result of new information, future events or changes in its expectations.

BioMarin is a registered trademark of BioMarin Pharmaceutical Inc.

Contacts:

Investors

Media

Traci McCarty

Debra Charlesworth

BioMarin Pharmaceutical Inc.

BioMarin Pharmaceutical Inc.

(415) 455-7558

(415) 455-7451

View original content to download multimedia:https://www.prnewswire.com/news-releases/biomarin-announces-12-presentations-at-the-international-society-on-thrombosis-and-haemostasis-isth-2021-virtual-congress-301324874.html

SOURCE BioMarin Pharmaceutical Inc.

See original here:
BioMarin Announces 12 Presentations at the International Society on Thrombosis and Haemostasis (ISTH) 2021 Virtual Congress - BioSpace

Posted in Gene Medicine | Comments Off on BioMarin Announces 12 Presentations at the International Society on Thrombosis and Haemostasis (ISTH) 2021 Virtual Congress – BioSpace

Apellis and Beam Therapeutics Enter Exclusive Research Collaboration to Apply Base Editing to Discover Novel Therapies for Complement-Driven Diseases…

Posted: at 8:49 pm

Collaboration combines Apellis expertise in complement, a complex biological system, with Beams proprietary base editing platform

Companies will collaborate on six research programs directed to tissues modulated by the complement system, including the eye, liver, and brain

WALTHAM, Mass. and CAMBRIDGE, Mass., June 30, 2021 (GLOBE NEWSWIRE) -- Apellis Pharmaceuticals, Inc. (Nasdaq: APLS) and Beam Therapeutics Inc. (Nasdaq: BEAM) today announced an exclusive five-year research collaboration focused on the use of Beams proprietary base editing technology to discover new treatments for complement-driven diseases. The companies will collaborate on six research programs focused on C3 and other complement targets in the eye, liver, and brain.

Beam has pioneered base editing, which holds significant promise as a best-in-class technology for precision gene editing. This collaboration builds on our deep scientific expertise in complement and, together with our growing pipeline, positions Apellis for long-term leadership in the complement field, said Cedric Francois, M.D., Ph.D., co-founder and chief executive officer, Apellis. Apellis and Beam share a vision for advancing transformative medicines for patients, which is critically important as we embark on a highly innovative effort to modulate complement and discover new treatments across a wide range of debilitating diseases.

Base editing represents a potential new class of precision genetic medicine that uses a chemical reaction designed to create precise, predictable, and efficient single base changes at targeted genomic sequences without making double-stranded breaks in the DNA. Editing key elements of the complement pathway in target organs has the potential to alter the complement cascade and durably address diseases driven by abnormal complement activity.

Apellis has established itself as a leader in complement with the advancement of compelling targeted C3 therapies, said John Evans, chief executive officer, Beam. This collaboration allows us to combine our proprietary technologies and capabilities in base editing with Apellis expertise in targeting the complement pathway to develop new medicines for diseases driven by complement biology. This also represents an important strategic initiative to explore opportunities that expand the application of base editing to address more biologically complex diseases for patients in need of new treatment options.

Story continues

Under the terms of the collaboration agreement, Beam will apply its base editing technology and conduct preclinical research on up to six base editing programs that target specific genes within the complement system in various organs, including the eye, liver, and brain. Apellis will have exclusive rights to license each of the six programs and will assume responsibility for subsequent development. Beam may elect to enter a 50-50 U.S. co-development and co-commercialization agreement with Apellis with respect to one program licensed under the collaboration.

As part of the collaboration, Beam will receive a total of $75 million in upfront and near-term milestones from Apellis $50 million upon signing and an additional $25 million payment on the one-year anniversary of the contract execution date. After exercise of the opt-in license rights for each of the up to six programs, Beam will be eligible to receive development, regulatory, and sales milestones from Apellis, as well as royalty payments on sales. The collaboration has an initial term of five years and may be extended up to two years on a per year and program-by-program basis.

About Apellis Apellis Pharmaceuticals, Inc. is a global biopharmaceutical company that is committed to leveraging courageous science, creativity, and compassion to deliver life-changing therapies. Leaders in targeted C3 therapies, we aim to develop transformative therapies for a broad range of debilitating diseases that are driven by excessive activation of the complement cascade, including those within hematology, ophthalmology, nephrology, and neurology. For more information, please visit https://www.apellis.com.

About Beam TherapeuticsBeam Therapeutics (Nasdaq: BEAM) is a biotechnology company committed to establishing the leading, fully integrated platform for precision genetic medicines. To achieve this vision, Beam has assembled a platform that includes a suite of gene editing and delivery technologies and is in the process of building internal manufacturing capabilities. Beams suite of gene editing technologies is anchored by base editing, a proprietary technology that enables precise, predictable and efficient single base changes, at targeted genomic sequences, without making double-stranded breaks in the DNA. This enables a wide range of potential therapeutic editing strategies that Beam is using to advance a diversified portfolio of base editing programs. Beam is a values-driven organization committed to its people, cutting-edge science, and a vision of providing life-long cures to patients suffering from serious diseases.

Apellis Forward-Looking Statement Statements in this press release about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements in respect of the expected closing of the exchanges. The words anticipate, believe, continue, could, estimate, expect, intend, may, plan, potential, predict, project, should, target, will, would and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: whether the research collaboration will result in programs that are licensed by Apellis; whether any product candidates that arise from these programs or are otherwise developed by Apellis will advance into clinical trials or through the clinical trial process on a timely basis or at all; whether the results of clinical trials of the companys product candidates will warrant submissions for regulatory approval or regulatory approval; whether any products that receive regulatory approval will be successfully distributed and marketed; and other factors discussed in the Risk Factors section of Apellis Quarterly Report on Form 10-Q with the Securities and Exchange Commission on April 28, 2021 and the risks described in other filings that Apellis may make with the Securities and Exchange Commission. Any forward-looking statements contained in this press release speak only as of the date hereof, and Apellis specifically disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise.

Beam Forward-Looking Statement This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Investors are cautioned not to place undue reliance on these forward-looking statements, including, but not limited to, statements related to: the therapeutic applications and potential of our technology, including our ability to develop life-long, curative, precision genetic medicines for patients through base editing. Each forward-looking statement is subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statement, including, without limitation, risks and uncertainties related to: our ability to raise additional funding, which may not be available; our ability to obtain, maintain and enforce patent and other intellectual property protection for our platform technology; the potential impact of the COVID-19 pandemic; risks related to competitive products; and the other risks and uncertainties identified under the heading Risk Factors in our Annual Report on Form 10-K for the year ended December 31, 2020, our Quarterly Report on Form 10-Q for the quarter ended March 31, 2021, and in any subsequent filings with the Securities and Exchange Commission. These forward-looking statements (except as otherwise noted) speak only as of the date of this press release. Factors or events that could cause our actual results to differ may emerge from time to time, and it is not possible for us to predict all of them. We undertake no obligation to update any forward-looking statement, whether as a result of new information, future developments or otherwise, except as may be required by applicable law.

Contacts:

Apellis:

Media:Lissa Pavlukmedia@apellis.com617.977.6764

Investors: Argot Partners apellis@argotpartners.com212.600.1902

Beam Therapeutics:

Media:Dan Budwick1ABdan@1abmedia.com

Investors:Chelcie ListerTHRUST Strategic Communicationschelcie@thrustsc.com

Read more:
Apellis and Beam Therapeutics Enter Exclusive Research Collaboration to Apply Base Editing to Discover Novel Therapies for Complement-Driven Diseases...

Posted in Gene Medicine | Comments Off on Apellis and Beam Therapeutics Enter Exclusive Research Collaboration to Apply Base Editing to Discover Novel Therapies for Complement-Driven Diseases…

The cell therapy manufacturing market is projected to reach USD 14.5 billion by 2030, growing at – GlobeNewswire

Posted: at 8:49 pm

London, July 01, 2021 (GLOBE NEWSWIRE) -- Roots Analysis has announced the addition of Cell Therapy Manufacturing Market (4th Edition), 2021-2030 report to its list of offerings.

Owing to the complex manufacturing processes, requirement of advanced production facilities and the growing demand for cell therapy products, developers are actively outsourcing certain manufacturing operations, in addition to expanding their in-house capabilities.

To order this 620 page report, which features 210+ figures and 280+ tables, please visit https://www.rootsanalysis.com/reports/view_document/cell-therapy-manufacturing/285.html

Key Market Insights

Around 200 organizations claim to be engaged in cell therapy manufacturingThe market landscape is dominated by industry players, which constitute 65% of the total number of stakeholders. Amongst these, over 25% companies are large firms.

280+ production facilities dedicated to cell therapies have been established worldwideNorth America has emerged as the manufacturing hub for cell therapies, with the presence of nearly 45% of the manufacturing facilities; this is followed by Europe (31%). Other emerging regions include China, Japan, South Korea and Australia.

90 cell therapy manufacturers are focused on immune cell and stem cell therapiesMost of the players in this domain are focused on manufacturing of T cell therapies, primarily CAR-T therapies, while the stem cell therapy manufacturers are primarily engaged in the production of adult stem cells and mesenchymal stem cell therapies

Presently, more than 70 companies carry out manufacturing at all scales of operation. Nearly 45% players have the required capabilities for commercial scale manufacturing. It is worth noting that all the industry players manufacture cell therapies required for clinical purposes.

35+ companies offer automated and closed systems to cell therapy developers More than 60 automated and closed systems are being used for cell therapy manufacturing. Organizations that are presently offering customized automated solutions for cell therapy processes / manufacturing are Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Germany), KMC Systems (US), RoosterBio (US) and Mayo Clinic Center for Regenerative Medicine (US).

Several partnerships were established in this domain, during the period 2016-2021More than 180 deals have been inked during the given time period. A large proportion (34%) of the partnerships were related to manufacturing of cell therapies, followed by acquisitions (17%) and licensing agreements (14%).

Expansion activity in this domain has grown at a CAGR of 59%, between 2016 and 2021More than 75 facility expansions were reported during the given time period. Over 80% instances were related to the establishment of new facilities, followed by those involving the expansion of existing facilities (17%).

Role of big pharma players in this industry has evolved over the last few years; their initiatives increased at a CAGR of 41% during the period 2016-2020Several big pharma players have undertaken various initiatives focused on cell therapy manufacturing. Gilead sciences, Takeda Pharmaceutical and Novartis are some of the prominent big pharma players in this domain.

The currently available global cell therapy manufacturing capacity is estimated to be over 1.88 billion sq. ft. of dedicated cleanroom areaThe maximum (48%) installed capacity (in terms of cleanroom area) belongs to companies based in North America (48%); the region has higher number of players having multiple production facilities. This is followed by Asia Pacific (29%) and Europe (23%).

The demand for cell therapies is anticipated to grow at a CAGR of 22%, during 2021-2030Presently, the clinical demand for stem cell and CAR-T cell-based products is the highest; this trend is unlikely to change in the foreseen future as well. On the other hand, the demand for tumor cell, NK cell and dendritic cell therapies is expected to grow at a relatively faster pace, over the next decade.

By 2030, the market for commercial scale cell therapy manufacturing is likely to grow at an annualized rate of 31.5%Currently, North America and Europe capture more than 70% share of the overall market. Specifically, the cell therapy manufacturing market in Asia Pacific is driven by countries, such as China, Japan, South Korea, India and Singapore. It is worth noting that the current market in Asia Pacific is primarily driven by the clinical demand for cell therapies.

To request a sample copy / brochure of this report, please visit https://www.rootsanalysis.com/reports/view_document/cell-therapy-manufacturing/285.html

Key Questions Answered

The USD 14.5 billion (by 2030) financial opportunity associated with cell therapy manufacturing market has been analyzed across the following segments:

The report also features inputs from eminent industry stakeholders, according to whom, the manufacturing of cell therapies is largely being outsourced due to exorbitant costs associated with the setting-up of in-house expertise. The report includes detailed transcripts of discussions held with the following experts:

The research includes profiles of key players (industry and non-industry; listed below), featuring a brief overview company / organization, information on its manufacturing facilities, service portfolio, recent partnerships and an informed future outlook.

For additional details, please visithttps://www.rootsanalysis.com/reports/view_document/cell-therapy-manufacturing/285.html or email sales@rootsanalysis.com

You may also be interested in the following titles:

Read this article:
The cell therapy manufacturing market is projected to reach USD 14.5 billion by 2030, growing at - GlobeNewswire

Posted in Gene Medicine | Comments Off on The cell therapy manufacturing market is projected to reach USD 14.5 billion by 2030, growing at – GlobeNewswire

Roche to present new data at the ISTH 2021 Congress highlighting long-standing commitment to advancing – GlobeNewswire

Posted: at 8:49 pm

Basel, 02 July 2021 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that new data from its haemophilia A clinical programme will be presented at the virtual International Society on Thrombosis and Haemostasis (ISTH) 2021 Congress, from 17-21 July 2021. Data will include the final analysis from the phase IIIb STASEY study of Hemlibra (emicizumab) and updated data from the phase I/II study of SPK-8011, an AAV-based gene therapy in development by Spark Therapeutics (a member of the Roche Group).1,2

Were excited to present new data from our haemophilia A programme at the ISTH 2021 Congress, said Levi Garraway, M.D., Ph.D., Roches Chief Medical Officer and Head of Global Product Development. These data reinforce our continued commitment to developing transformational therapies for the haemophilia A community and advancing understanding of the long-term efficacy and safety profile of Hemlibra.

Haemophilia A is a serious, inherited bleeding disorder in which a persons blood doesn't clot properly, as they either lack or do not have enough of a clotting protein called factor VIII. This can lead to uncontrolled bleeding, either spontaneously or after minor trauma. These bleeds can present a significant health concern as they often cause pain and can lead to chronic swelling, deformity, reduced mobility, and long-term joint damage.3 The development of factor VIII inhibitors can be a significant challenge in the treatment of people with haemophilia A as they bind to and block the efficacy of replacement factor VIII.4

The STASEY study is one of the largest open-label studies primarily assessing the safety and tolerability of a medicine for adults and adolescents with haemophilia A with factor VIII inhibitors. Final data from the STASEY study, evaluating the safety and tolerability of Hemlibra prophylaxis in adults and adolescents with haemophilia A with factor VIII inhibitors, will be presented at the congress.1 These results confirm the favourable safety profile of Hemlibra, as previously demonstrated in the phase III HAVEN clinical trials.1,5,6,7

Spark Therapeutics will share updated data from the ongoing phase I/II clinical trial of SPK-8011, an investigational AAV-based gene therapy developed for the treatment of haemophilia A. These data demonstrate that hepatocyte expression of factor VIII can be stable and durable for up to four years following vector administration, with an acceptable safety profile.2

We are looking forward to sharing data on our investigational gene therapy, SPK-8011, which is being evaluated in the largest phase I/II gene therapy trial in haemophilia A to date, and which reinforces Sparks mission to bring a novel gene therapy option to persons with haemophilia A, said Gallia Levy, M.D., Ph.D., Chief Medical Officer, Spark Therapeutics.

SPK-8011 data presentationUpdated results from Sparks ongoing phase I/II study of investigational SPK-8011 will be shared as an oral presentation during the meeting. These data highlight the safety profile and durability of SPK-8011 in 18 participants, up to four years following vector administration with SPK-8011 in four dose cohorts, ranging from 5x1011 vg/kg to 21012 vg/kg, with results showing a 93% reduction in annualised bleed rate (ABR) and a 97% reduction in annualised infusion rate.2

Key Hemlibra and haemophilia data presentationsFinal data from the STASEY study presented at the congress demonstrate that Hemlibra is effective, with ABRs consistent with observations reported from the pivotal HAVEN studies.1,5,6,7 Additionally, no new safety signals were identified in adults and adolescents with haemophilia A with factor VIII inhibitors, consistent with previous safety observations.1

Roche will also present a retrospective analysis comparing ABR and Hemlibra concentrations among obese and non-obese adults with haemophilia A from pooled data from the HAVEN 1, 3, and 4 studies.8 These data suggest that body weight does not significantly impact the efficacy of Hemlibra, regardless of dosing regimen, demonstrating that Hemlibra offers an effective, well tolerated treatment, with flexible dosing options, in obese and non-obese people with haemophilia A.

Additionally, an analysis of data from the 2017 CHESS PAEDs (Cost of Haemophilia across Europe: a Socioeconomic Survey in the Paediatric Population) study, examining the association between physical activity levels and bleed rates in children with haemophilia A, will be presented.9 Results from this analysis demonstrate the potential treatment needs and clinical burden in physically active children with moderate and severe haemophilia A receiving factor VIII replacement therapy.

Key abstracts from Roche and Spark that will be presented at ISTH can be found in the table below.

Follow Roche and Spark on Twitter via @Roche and @Spark_tx respectively, and keep up to date with ISTH 2021 Congress news and updates by using the hashtag #ISTH2021.

Virtual Meeting Room 3

Virtual Meeting Room 3

Virtual Meeting Room 8

About Hemlibra (emicizumab)Hemlibra is approved for routine prophylaxis of bleeding episodes in people with haemophilia A with and without factor VIII inhibitors in over 100 countries worldwide for those with inhibitors and over 80 countries for those without inhibitors, in adults and children, ages newborn and older. Hemlibra is a bispecific factor IXa- and factor X-directed antibody. It is designed to bring together factor IXa and factor X, proteins involved in the natural coagulation cascade, and restore the blood clotting process for people with haemophilia A. Hemlibra is a prophylactic (preventative) treatment that can be administered by an injection of a ready-to-use solution under the skin (subcutaneously) once-weekly, every two weeks or every four weeks (after an initial once-weekly dose for the first four weeks). Hemlibra was created by Chugai Pharmaceutical Co., Ltd. and is being co-developed globally by Chugai, Roche and Genentech. It is marketed in the United States by Genentech as Hemlibra (emicizumab-kxwh), with kxwh as the suffix designated in accordance with Nonproprietary Naming of Biological Products Guidance for Industry issued by the US Food and Drug Administration.

About SPK-8011 for haemophilia AInvestigational SPK-8011, a novel bio-engineered adeno-associated viral (AAV) vector utilizing the AAV-LK03 capsid, also referred to as Spark200, contains a codon-optimized human factor VIII gene under the control of a liver-specific promoter. The Food and Drug Administration (FDA) granted orphan-disease designation and breakthrough therapy designation in the U.S., while the European Commission has granted orphan designation to SPK-8011.

About haemophilia AHaemophilia A is an inherited, serious disorder in which a persons blood does not clot properly, leading to uncontrolled and often spontaneous bleeding. Haemophilia A affects around 900,000 people worldwide,10,11 approximately 35-39% of whom have a severe form of the disorder.11 People with haemophilia A either lack or do not have enough of a clotting protein called factor VIII. In a healthy person, when a bleed occurs, factor VIII brings together the clotting factors IXa and X, which is a critical step in the formation of a blood clot to help stop bleeding. Depending on the severity of their disorder, people with haemophilia A can bleed frequently, especially into their joints or muscles.10 These bleeds can present a significant health concern as they often cause pain and can lead to chronic swelling, deformity, reduced mobility, and long-term joint damage.3 A serious complication of treatment is the development of inhibitors to factor VIII replacement therapies.12 Inhibitors are antibodies developed by the bodys immune system that bind to and block the efficacy of replacement factor VIII,13 making it difficult, if not impossible, to obtain a level of factor VIII sufficient to control bleeding.

About Roche and Spark Therapeutics gene therapy research in haemophilia AWe believe gene therapy has the potential to revolutionise medicine and improve the lives of patients with genetic and other serious diseases. Pairing Roches long-standing commitment to developing medicines in haemophilia with Spark Therapeutics proven gene therapy expertise brings together the best team of collaborators researching gene therapies in haemophilia A.

It is our aligned objective to develop gene therapies for haemophilia A that, with the lowest effective dose and the optimal immunomodulatory regimen, demonstrate safety, predictability, efficacy, and durability for patients.

About Spark TherapeuticsAt Spark Therapeutics, a fully integrated, commercial company committed to discovering, developing and delivering gene therapies, we challenge the inevitability of genetic diseases, including blindness, haemophilia, lysosomal storage disorders and neurodegenerative diseases. We currently have four programs in clinical trials. At Spark, a member of the Roche Group, we see the path to a world where no life is limited by genetic disease. For more information, visit http://www.sparktx.com, and follow us on Twitter and LinkedIn.

About Roche in haematologyRoche has been developing medicines for people with malignant and non-malignant blood diseases for over 20 years; our experience and knowledge in this therapeutic area runs deep. Today, we are investing more than ever in our effort to bring innovative treatment options to patients across a wide range of haematologic diseases. Our approved medicines include MabThera/Rituxan (rituximab), Gazyva/Gazyvaro (obinutuzumab), Polivy (polatuzumab vedotin), Venclexta/Venclyxto (venetoclax) in collaboration with AbbVie, and Hemlibra (emicizumab). Our pipeline of investigational haematology medicines includes T-cell engaging bispecific antibodies, glofitamab and mosunetuzumab, targeting both CD20 and CD3, and cevostamab, targeting FcRH5 and CD3; Tecentriq (atezolizumab), a monoclonal antibody designed to bind with PD-L1; and crovalimab, an anti-C5 antibody engineered to optimise complement inhibition. Our scientific expertise, combined with the breadth of our portfolio and pipeline, also provides a unique opportunity to develop combination regimens that aim to improve the lives of patients even further.

About RocheRoche is a global pioneer in pharmaceuticals and diagnostics focused on advancing science to improve peoples lives. The combined strengths of pharmaceuticals and diagnostics, as well as growing capabilities in the area of data-driven medical insights help Roche deliver truly personalised healthcare. Roche is working with partners across the healthcare sector to provide the best care for each person.

Roche is the worlds largest biotech company, with truly differentiated medicines in oncology, immunology, infectious diseases, ophthalmology and diseases of the central nervous system. Roche is also the world leader in in vitro diagnostics and tissue-based cancer diagnostics, and a frontrunner in diabetes management. In recent years, Roche has invested in genomic profiling and real-world data partnerships and has become an industry-leading partner for medical insights.

Founded in 1896, Roche continues to search for better ways to prevent, diagnose and treat diseases and make a sustainable contribution to society. The company also aims to improve patient access to medical innovations by working with all relevant stakeholders. More than thirty medicines developed by Roche are included in the World Health Organization Model Lists of Essential Medicines, among them life-saving antibiotics, antimalarials and cancer medicines. Moreover, for the twelfth consecutive year, Roche has been recognised as one of the most sustainable companies in the Pharmaceuticals Industry by the Dow Jones Sustainability Indices (DJSI).

The Roche Group, headquartered in Basel, Switzerland, is active in over 100 countries and in 2020 employed more than 100,000 people worldwide. In 2020, Roche invested CHF 12.2 billion in R&D and posted sales of CHF 58.3 billion. Genentech, in the United States, is a wholly owned member of the Roche Group. Roche is the majority shareholder in Chugai Pharmaceutical, Japan. For more information, please visit http://www.roche.com.

All trademarks used or mentioned in this release are protected by law.

References[1] Jimnez-Yuste J, et al. Final Analysis of the STASEY Trial: A Single-arm, Multicenter, Open-label, Phase III Clinical Trial Evaluating the Safety and Tolerability of Emicizumab Prophylaxis in Persons with Hemophilia A (PwHA) with factor (F)VIII Inhibitors. Presented at: International Society on Thrombosis and Haemostasis (ISTH) Congress; 2021 Jul 17-21; Philadelphia, PA, USA. Abstract PB0521.[2] George LA, et al. Phase I/II trial of SPK-8011: Stable and Durable FVIII Expression After AAV Gene Transfer for Hemophilia A. Presented at: International Society on Thrombosis and Haemostasis (ISTH) Congress; 2021 Jul 17-21; Philadelphia, PA, USA. Abstract OC 67.2.[3] Franchini M, et al. Haemophilia A in the third millennium. Blood Rev. 2013; 179-84.[4] Shannon L. Meeks at al. Hemophilia and inhibitors: current treatment options and potential new therapeutic approaches. Hematology Am Soc Hematol Educ Program 2016 (1): 657662. [5] Oldenburg J, et al. Emicizumab Prophylaxis in Hemophilia A with Inhibitors. N Engl J Med. 2017; 377:809-818.[6] Young G, et al. Emicizumab prophylaxis provides flexible and effective bleed control in children with hemophilia A with inhibitors: results from the HAVEN 2 study. Blood. 2018; 132 (Supplement 1): 632.[7] Pipe S, et al. Emicizumab subcutaneous dosing every 4 weeks is safe and efficacious in the control of bleeding in persons with haemophilia A with and without inhibitors: Results from the phase 3 HAVEN 4 study. Presented at: WFH World Congress; 2018 May 20-24; Glasgow, Scotland, UK. Abstract M-LBMED01-005 (854).[8] Recht M, et al. Emicizumab in Obese Adults with Hemophilia A Pooled Data from Three Phase III Studies (HAVEN 1, 3 and 4). Presented at: International Society on Thrombosis and Haemostasis (ISTH) Congress; 2021 Jul 17-21 Philadelphia, PA, USA. Abstract PB0495.[9] Ofori-Asenso et al. Association of Physical Activity with Bleeding Frequency in Children with Hemophilia A: a CHESS PAEDs Study Analysis. Presented at: International Society on Thrombosis and Haemostasis (ISTH) Congress; 2021 Jul 17-21; Philadelphia, PA, USA. Abstract PB0512.[10] Srivastava, A, Santagostino, E, Dougall, A, et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia. 2020: 26 (Suppl 6): 1158.[11] Iorio A et al. Establishing the Prevalence and Prevalence at Birth of Hemophilia in Males. Ann Intern Med. 2019 Oct 15;171(8):540-546.[12] Gomez K, et al. Key issues in inhibitor management in patients with haemophilia. Blood Transfus. 2014; 12:s319-s329.[13] Whelan SF, et al. Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of haemophilia A patients. Blood. 2013; 121:1039-48.

Roche Group Media RelationsPhone: +41 61 688 8888 / e-mail: media.relations@roche.com

Read more:
Roche to present new data at the ISTH 2021 Congress highlighting long-standing commitment to advancing - GlobeNewswire

Posted in Gene Medicine | Comments Off on Roche to present new data at the ISTH 2021 Congress highlighting long-standing commitment to advancing – GlobeNewswire

Page 884«..1020..883884885886..890900..»