Page 2,095«..1020..2,0942,0952,0962,097..2,1002,110..»

Category Archives: Transhuman News

Trump may fund the Spacex Mars Colonization plan – Next Big Future

Posted: February 6, 2017 at 2:49 pm

Elon Musk, the founder of SpaceX and Tesla, has made trips to Trump Tower. He met with Trump and the Washington Post has ben reliably told, discussed Mars and public-private partnerships.

Elon Musk and SpaceX have the bold dream of colonizing Mars, and think they can launch the first human mission to the surface of the Red Planet as soon as 2024 when Trump, if reelected, would still be in the White House. (We understand that Musk also talked with Trump about other issues, including the need for a smart grid the kind of infrastructure that would give a boost to the solar energy business, in which Musk is a leader via his investments in the company Solar City.)

Trump seems to be cozying up to Elon Musk and is entertaining the idea of financing Musks Mars colonization project

Elon's Vision of the Mars Colony

Initially, glass panes with carbon fiber frames to build geodesic domes on the surface, plus a lot of miner/tunneling droids. With the latter, you can build out a huge amount of pressurized space for industrial operations and leave the glass domes for green living space.

Real Mars and Spacex Plans

The current Mars plan is:

The Flight Tank for the Interstellar Transport was the most important part of the announcement

The flight tank will actually be slightly longer than the development tank shown, but the same diameter.

That was built with latest and greatest carbon fiber prepreg. In theory, it should hold cryogenic propellant without leaking and without a sealing linker. Early tests are promising.

Will take it up to 2/3 of burst pressure on an ocean barge in the coming weeks.

The spaceship would be limited to around 5 g's nominal, but able to take peak loads 2 to 3 times higher without breaking up.

Booster would be nominal of 20 and maybe 30 to 40 without breaking up.

Spacex and Elon Musk have the 61 page presentation of the Interplanetary Transport System and the plan from early exploration to a sustainable colony on Mars

Spacex has built a full sized carbon composite fuel tank.

The Interplanetary Transport system can launch 550 tons to low earth orbit which is nearly four times as much as the Saturn V. It would be over four times as powerful as the SLS in the final version of the SLS

Next version of Falcon 9 will have uprated thrust

Final Falcon 9 has a lot of minor refinements that collectively are important, but uprated thrust and improved legs are the most significant.

Elon thinks the F9 boosters could be used almost indefinitely, so long as there is scheduled maintenance and careful inspections. Falcon 9 Block 5 -- the final version in the series -- is the one that has the most performance and is designed for easy reuse, so it just makes sense to focus on that long term and retire the earlier versions. Block 5 starts production in about 3 months and initial flight is in 6 to 8 months, so there isn't much point in ground testing Block 3 or 4 much beyond a few reflights.

Robert Zubrin, Longtime Mars Colonization advocate, gives a Critique of the SpaceX Interplanetary Transport System.

Zubrin was struck by many good and powerful ideas in the Musk plan. However, Musks plan assembled some of those good ideas in an extremely suboptimal way, making the proposed system impractical. Still, with some corrections, a system using the core concepts Musk laid out could be made attractive not just as an imaginative concept for the colonization of Mars, but as a means of meeting the nearer-at-hand challenge of enabling human expeditions to the planet.

Zubrin explains the conceptual flaws of the new SpaceX plan, showing how they can be corrected to benefit, first, the near-term goal of initiating human exploration of the Red Planet, and then, with a cost-effective base-building and settlement program, the more distant goal of future Mars colonization.

Robert Zubrin, a New Atlantis contributing editor, is president of Pioneer Energy of Lakewood, Colorado, and president of the Mars Society.

Highlights * Have the second stage go only out to the distance of the moon and return to enable 5 payloads to be sent instead of one * Leave the 100 person capsule on Mars and only have a small cabin return to earth * use the refueling in orbit and other optimizations to enable a Falcon Heavy to deliver 40 tons to Mars instead of 12 for exploration missions in 2018, 2020 etc... * Reusable first stage makes rocketplanes going anywhere point to point on Earth feasible. Falcon Heavy would have the capacity of a Boeing 737 and could travel in about one hour of time anywhere

There are videos of the Elon Musk presentation and an interview with Zubrin about the Musk plan at the bottom of the article

Design of the SpaceX Interplanetary Transport System

As described by Musk, the SpaceX ITS would consist of a very large two-stage fully-reusable launch system, powered by methane/oxygen chemical bipropellant. The suborbital first stage would have four times the takeoff thrust of a Saturn V (the huge rocket that sent the Apollo missions to the Moon). The second stage, which reaches orbit, would have the thrust of a single Saturn V. Together, the two stages could deliver a maximum payload of 550 tons to low Earth orbit (LEO), about four times the capacity of the Saturn V. (Note: All of the tons referenced in this article are metric tons.)

At the top of the rocket, the spaceship itself where some hundred passengers reside is inseparable from the second stage. (Contrast this with, for example, NASAs lunar missions, where each part of the system was discarded in turn until just the Command Module carried the Apollo astronauts back to Earth.) Since the second-stage-plus-spaceship will have used its fuel in getting to orbit, it would need to refuel in orbit, filling up with about 1,950 tons of propellant (which means that each launch carrying passengers would require four additional launches to deliver the necessary propellant). Once filled up, the spaceship can head to Mars.

The duration of the journey would of course depend on where Earth and Mars are in their orbits; the shortest one-way trip would be around 80 days, according to Musks presentation, and the longest would be around 150 days. (Musk stated that he thinks the architecture could be improved to reduce the trip to 60 or even 30 days.)

After landing on Mars and discharging its passengers, the ship would be refueled with methane/oxygen bipropellant made on the surface of Mars from Martian water and carbon dioxide, and then flown back to Earth orbit.

Zubrin's Problems with the Proposed Spacex System

The SpaceX plan as Musk described it contains nine notable features. If we examine each of these in turn, some of the strengths and weaknesses in the overall system will begin to present themselves.

1. Extremely large size. The proposed SpaceX launch system is four times bigger than a Saturn V rocket. This is a serious problem, because even with the companys impressively low development costs, SpaceX has no prospect of being able to afford the very large investment at least $10 billion required to develop a launch vehicle of this scale.

2. Use of methane/oxygen bipropellant for takeoff from Earth, trans-Mars injection, and direct return to Earth from the Martian surface. These ideas go together, and are very strong. Methane/oxygen is, after hydrogen/oxygen, the highest-performing practical propellant combination, and it is much more compact and storable than hydrogen/oxygen. It is very cheap, and is the easiest propellant to make on Mars. For over a quarter century, I have been a strong advocate of this design approach, making it a central feature of the Mars Direct mission architecture I first laid out in 1990 and described in my book The Case for Mars. However, it should be noted that while the manufacture of methane/oxygen from Martian carbon dioxide and water is certainly feasible, it is not without cost in effort, power, and capital facilities, and so the transportation system should be designed to keep this burden on the Mars base within manageable bounds.

3. The large scale manufacture of methane/oxygen bipropellant on the Martian surface from indigenous materials. Here I offer the same praise and the same note of caution as above. The use of in situ (that is, on-site) Martian resources makes the entire SpaceX plan possible, just as it is a central feature of my Mars Direct plan. But the scale of the entire mission architecture must be balanced with the production capacity that can realistically be established.

4. All flight systems are completely reusable. This is an important goal for minimizing costs, and SpaceX is already making substantial advances toward it by demonstrating the return and reuse of the first stage of its Falcon 9 launch vehicle. However, for a mission component to be considered reusable it doesnt necessarily need to be returned to Earth and launched again. In general, it can make more sense to find other ways to reuse components off Earth that are already in orbit or beyond. This idea is reflected in some parts of the new SpaceX plan such as refilling the second stage in low Earth orbit but, as we shall see, it is ignored elsewhere, at considerable cost to program effectiveness. Furthermore the rate at which systems can be reused must also be considered.

5. Refilling methane/oxygen propellant in the booster second stage in Earth orbit. Here Musk and his colleagues face a technical challenge, since transferring cryogenic fluids in zero gravity has never been done. The problem is that in zero gravity two-phase mixtures float around with gas and liquid mixed and scattered among each other, making it difficult to operate pumps, while the ultra-cold nature of cryogenic fluids precludes the use of flexible bladders to effect the fluid transfer. However, I believe this is a solvable problem and one well worth solving, both for the benefits it offers this mission architecture and for different designs we may see in the future.

6. Use of the second stage to fly all the way to the Martian surface and back. This is a very bad idea. For one thing, it entails sending a 7-million-pound-force thrust engine, which would weigh about 60 tons, and its large and massive accompanying tankage all the way from low Earth orbit to the surface of Mars, and then sending them back, at great cost to mission payload and at great burden to Mars base-propellant production facilities. Furthermore, it means that this very large and expensive piece of capital equipment can be used only once every four years (since the feasible windows for trips to and from Mars occur about every two years).

7. The sending of a large habitat on a roundtrip from Earth to Mars and back. This, too, is a very bad idea, because the habitat will get to be used only one way, once every four years. If we are building a Mars base or colonizing Mars, any large habitat sent to the planets surface should stay there so the colonists can use it for living quarters. Going to great expense to send a habitat to Mars only to return it to Earth empty makes no sense. Mars needs houses.

8. Quick trips to Mars. If we accept the optimistic estimates that Musk offered during his presentation, the SpaceX system would be capable of 115-day (average) one-way trips from Earth to Mars, a somewhat faster journey than other proposed mission architectures. But the speedier trips impose a great cost on payload capability. And they raise the price tag, thereby undermining the architectures professed purpose colonizing Mars since the primary requirement for colonization is to reduce cost sufficiently to make emigration affordable. Lets do some back-of-the-envelope calculations. Following the example of colonial America, lets pick as the affordability criterion the property liquidation of a middle-class household, or seven years pay for a working man (say about $300,000 in todays equivalent terms), a criterion with which Musk roughly concurs. Most middle-class householders would prefer to get to Mars in six months at the cost equivalent to one house instead of getting to Mars in four months at a cost equivalent to three houses. For immigrants, who will spend the rest of their lives on Mars, or even explorers who would spend 2.5 years on a round trip, the advantage of reaching Mars one-way in four months instead of six months is negligible and if shaving off two months would require a reduction in payload, meaning fewer provisions could be brought along, then the faster trip would be downright undesirable. Furthermore, the six-month transit is actually safer, because it is also the trajectory that loops back to Earth exactly two years after departure, so the Earth will be there to meet it. And trajectories involving faster flights to Mars will necessarily loop further out into space if the landing on Mars is aborted, and thus take longer than two years to get back to Earths orbit, making the free-return backup abort trajectory impossible. The claim that the SpaceX plan would be capable of 60-day (let alone 30-day) one-way transits to Mars is not credible.

9. The use of supersonic retropropulsion to achieve landing on Mars. This is a breakthrough concept for landing large payloads, one that SpaceX has demonstrated successfully in landing the first stages of its Falcon 9 on Earth. Its feasibility for Mars has thus been demonstrated in principle. It should be noted, however, that SpaceX is now proposing to scale up the landing propulsion system by about a factor of 50 and employing such a landing techniques adds to the propulsive requirement of the mission, making the (unnecessary) goal of quick trips even harder to achieve.

Improving the SpaceX ITS Plan

Taking the above points into consideration, some corrections for the flaws in the current ITS plan immediately suggest themselves:

A. Instead of hauling the massive second stage of the launch vehicle all the way to Mars, the spacecraft should separate from it just before Earth escape. In this case, instead of flying all the way to Mars and back over 2.5 years, the second stage would fly out only about as far as the Moon, and return to aerobrake into Earth orbit a week after departure. If the refilling process could be done expeditiously, say in a week, it might thus be possible to use the second stage five times every mission opportunity (assuming a launch window of about two months), instead of once every other mission opportunity. This would increase the net use of the second stage propulsion system by a factor of 10, allowing five payloads to be delivered to Mars every opportunity using only one such system, instead of the ten required by the ITS baseline design. Without the giant second stage, the spaceship would then perform the remaining propulsive maneuver to fly to and land on Mars.

B. Instead of sending the very large hundred-person habitat back to Earth after landing it on Mars, it would stay on Mars, where it could be repurposed as a Mars surface habitat something that the settlers would surely find extremely useful. Its modest propulsive stage could be repurposed as a surface-to-surface long-range flight system, or scrapped to provide material to meet other needs of the people living on Mars. If the propulsive system must be sent back to Earth, it should return with only a small cabin for the pilots and such colonists as want to call it quits. Such a procedure would greatly increase the payload capability of the ITS system while reducing its propellant-production burden on the Mars base.

C. As a result of not sending the very large second stage propulsion system to the Martian surface and not sending the large habitat back from the Martian surface, the total payload available to send one-way to Mars is greatly increased while the propellant production requirements on Mars would be greatly reduced.

D. The notion of sacrificing payload to achieve one-way average transit times substantially below six months should be abandoned. However, if the goal of quick trips is retained, then the corrections specified above would make it much more feasible, greatly increasing payload and decreasing trip time compared to what is possible with the original approach.

Changing the plan in the ways described above would greatly improve the performance of the ITS. This is because the ITS in its original form is not designed to achieve the mission of inexpensively sending colonists and payloads to Mars. Rather, it is designed to achieve the science-fiction vision of the giant interplanetary spaceship. This is a fundamental mistake, although the temptation is understandable. (A similar visionary impulse influenced the design of NASAs space shuttle, with significant disadvantage to its performance as an Earth-to-orbit payload delivery system.) The central requirement of human Mars missions is not to create or operate giant spaceships. Rather, it is to send payloads from Earth to Mars capable of supporting groups of people, and then to send back such payloads as are necessary.

To put it another way: The visionary goal might be to create spaceships, but the rational goal is to send payloads.

Alternative Versions of the SpaceX ITS Plan

To get a sense of some of the benefits that would come from making the changes I [Zubrin] outlined above, lets make some estimates. In the table below, I [Zubrin] compare six versions of the ITS plan, half based on the visionary form that Elon Musk sketched out (called the Original or O design in the table) and half incorporating the alterations I [Zubrin] have suggested (the Revised or R designs).

Our starting assumptions: The ship begins the mission in a circular low Earth orbit with an altitude of 350 kilometers and an associated orbital velocity of 7.7 kilometers per second (km/s). Escape velocity for such a ship would be 10.9 km/s, so applying a velocity change (DV) of 3 km/s would still keep it in a highly elliptical orbit bound to the Earth. Adding another 1.2 km/s would give its payload a perigee velocity of 12.1 km/s, sufficient to send it on a six-month trajectory to Mars, with a two-year free-return option to Earth. (In calculating trip times to Mars, we assume average mission opportunities. In practice some would reach Mars sooner, some later, depending on the launch year, but all would maintain the two-year free return.) We assume a further 1.3 km/s to be required for midcourse corrections and landing using supersonic retropropulsion. For direct return to Earth from the Martian surface, we assume a total velocity change of 6.6 km/s to be required. In all cases, an exhaust velocity of 3.74 km/s (that is, a specific impulse of 382 s) for the methane/oxygen propulsion, and a mass of 2 tons of habitat mass per passenger are assumed. A maximum booster second-stage tank capacity of 1,950 tons is assumed, in accordance with the design data in Musks presentation.

Using the improved plan to send 40 tons (3.3 times more) to Mars with Falcon Heavy

Consider what this revised version of the ITS plan would look like in practice, if it were used not for settling Mars but for the nearer-at-hand task of exploring Mars. If a SpaceX Falcon Heavy launch vehicle were used to send payloads directly from Earth, it could land only about 12 tons on Mars. (This is roughly what SpaceX is planning on doing in an unmanned Red Dragon mission as soon as 2018.) While it is possible to design a minimal manned Mars expedition around such a limited payload capability, such mission plans are suboptimal. But if instead, following the ITS concept, the upper stage of the Falcon Heavy booster were refueled in low Earth orbit, it could be used to land as much as 40 tons on Mars, which would suffice for an excellent human exploration mission. Thus, if booster second stages can be refilled in orbit, the size of the launch vehicle required for a small Mars exploration mission could be reduced by about a factor of three.

In all of the ITS variants discussed here, the entire flight hardware set would be fully reusable, enabling low-cost support of a permanent and growing Mars base. However, complete reusability is not a requirement for the initial exploration missions to Mars; it could be phased in as technological abilities improved. Furthermore, while the Falcon Heavy as currently designed uses kerosene/oxygen propulsion in all stages, not methane/oxygen, in the revised ITS plan laid out above only the propulsion system in the trans-Mars ship needs to be methane/oxygen, while both stages of the booster can use any sort of propellant. This makes the problem of refilling the second stage on orbit much simpler, because kerosene is not cryogenic, and thus can be transferred in zero gravity using flexible bladders, while liquid oxygen is paramagnetic, and so can be settled on the pumps side of the tank using magnets.

Dawn of the Spaceplanes

Toward the end of his presentation, Musk briefly suggested that one way to fund the development of the ITS might be to use it as a system for rapid, long-distance, point-to-point travel on Earth. This is actually a very exciting possibility, although I would add the qualifier that such a system would not be the ITS as described, but a scaled-down related system, one adapted to the terrestrial travel application.

For a rocketplane to travel halfway around the world would require a DV of about 7 km/s (6 km/s in physical velocity, and 1 km/s in liftoff gravity and drag losses). Assuming methane/oxygen propellant with an exhaust velocity of 3.4 km/s (it would be lower for a rocketplane than for a space vehicle, because exhaust velocity is reduced by surrounding air), such a vehicle, if designed as a single stage, would need to have a mass ratio of about 8, which means that only 12 percent of its takeoff mass could be solid material, accounting for all structures, while the rest would be propellant. On the other hand, if the rocketplane were boosted toward space by a reusable first stage that accomplished the first 3 km/s of the required DV, the flight vehicle would only need a mass ratio of about 3, allowing 34 percent of it to be structure. This reduction of the propellant-to-structure ratio from 7:1 down to 2:1 is the difference between a feasible system and an infeasible one.

In short, what Musk has done by making reusable first stages a reality is to make rocketplanes possible. But there is no need to wait for 500-ton-to-orbit transports. In fact, his Falcon 9 reusable first stage, which is already in operation, could enable globe-spanning rocketplanes with capacities comparable to the DC-3, while the planned Falcon Heavy (or New Glenn) launch vehicles could make possible rocketplanes with the capacity of a Boeing 737.

Nextbigfuture notes that reusable first stages are now technically functioning but safety and reliability would need to be improved by about 1000 to 10,000 times for point to point manned travel.

SOURCES- Spacex, Zubrin, the New Atlantis

Read the original here:
Trump may fund the Spacex Mars Colonization plan - Next Big Future

Posted in Moon Colonization | Comments Off on Trump may fund the Spacex Mars Colonization plan – Next Big Future

Cheaper blue jeans that are better for the environment? Genetic engineering can make it happen – Genetic Literacy Project

Posted: at 2:49 pm

Editors note: This piece is written byDr. Miller, a physician and molecular biologist, who was the founding director of the FDAs Office of Biotechnology.

Genetic engineers have developed a way to produce the two principal components [of blue jeans], cotton fabric and indigo dye, for less money and soon will make commercial blue jean production cheaper than ever.

Bt cotton helps farmers to control major peststhe cotton and pink bollworm and the tobacco budwormwhich account for a quarter of all crop destruction due to insects. From 1996 through 2014, this technology increased cotton yields by an average of 17.3%

Bt cotton is also environmentally friendly. With conventional cotton, farmers control insects by applying huge amounts of chemical pesticides known to harm birds, fish and other aquatic organisms. Lessening the need for pesticides also reduces farm workers exposure to those chemicals.

The other main ingredient in bluejeans, indigo dye, is usually produced synthetically through a complex, multistep process performed with highly toxic chemicals. It requires special facilities and precautions to protect workers and the environment. But indigo dye can also be made using genetically engineered bacteria. This process has fewer steps, uses water instead of toxic organic solvents, incorporates corn syrup as the primary starting material, and yields nontoxic waste products. While it is not yet efficient enough for commercial use, stay tuned.

Instead of accepting critics unsubstantiated claims, consumers should be demanding [genetic engineerings] wider application in agriculture and other industries.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Youd Look Good in Designer Genes

Read more from the original source:
Cheaper blue jeans that are better for the environment? Genetic engineering can make it happen - Genetic Literacy Project

Posted in Genetic Engineering | Comments Off on Cheaper blue jeans that are better for the environment? Genetic engineering can make it happen – Genetic Literacy Project

Saving the flavors of centuries: against Flavr Savr and the genetic engineering of taste – Slow food

Posted: at 2:49 pm

Several years ago, in its Retro Report section, the New York Times posted an old video about the genetically modified Flavr Savr tomato, which was developed by Calgene and launched on to the market in 1994 only to be withdrawn a few years later. The video includes clips of a television program from the time. An intrigued woman is shown two tomatoes picked 30 days earlier, neither of which has been refrigerated. The first tomato is perfect: round, bright red and with no signs of softening. The second has wrinkly skin and a dulled color, clearly rotten. The perfect tomato is a Flavr Savr, engineered to maintain the texture, juiciness and color of a freshly picked tomato for longer. However, despite its apparent perfection and characteristics which, from a commercial point of view, should have certainly made it a success, the Flavr Savr vanished not long after it appeared. Why? Because it was missing the one feature more important than any other: flavor.

Fast forward to today, and the latest cover of Science magazine features Tastier Tomatoes, which hints at the research being conducted by a large group of scientists to design a truly perfect tomato with the texture, juiciness and color of a freshly picked tomato, and indeed, the flavor of heirloom tomato varieties.

The premise of the study is that modern commercial tomato varieties are substantially less flavorful than heirloom varieties. Over time, agricultural research has focused on improving the characteristics that determine whether different varieties are commercially successful: yield, disease resistance and firmness. All at the expense of flavor. Often, the tomatoes we buy taste of nothing. They seem like fake fruit, all too perfect to look at, but flavorless. To fix this fault, the team of scientists have studied the characteristics that most affect the flavor of the product, sequencing the whole genome of 398 modern, heirloom and wild varieties. They then selected 160 tomato samples from 100 varieties and grew them in the laboratory, harvested them and submitted them to extensive taste testing by 100 people. The participants voted for the tomatoes based on flavor and, by comparing this information with their genetic analyses, the scientists determined which genes were associated with flavors that the public enjoyed.

Is a new future taking shape for a fruit that the FAO considers to be one of the most high-value in the world? Maybe. A laboratory-made future, completely removed from the land and restricted by private patents, like all genetically modified products. Slow Food on the other hand, supports a different kind of research, namely what farmers have been doing for around 10,000 years: selecting seeds, conserving them, propagating them and developing varieties suited to different soils and climates, based on traditional knowledge. Work that, over centuries, improves the yield, flavor and nutritional value of crops, without compromising biodiversity and, on the contrary, gradually enriching it.

Examples of these crops are cataloged in the Ark of Taste and among Slow Food Presidia: the Platense tomato from Argentina which, despite its far superior flavor compared with commercial tomatoes, has to deal with intense competition from high-yield hybrid varieties that can be produced all year round; the Smooth Skin Geraldton tomato from Australia, which is suffering due to the appearance of greenhouses in Melbourne and Adelaide which enable tomato production all year round; Kurtovo Konare pink tomatoes, whose survival is under threat from foreign varieties with higher yields that are more suited to being transported; and the Torre Canne Regina tomato, grown without irrigation using organic methods in Apulia, which faces almost unbeatable commercial competition from greenhouse-grown cherry tomatoes. We could mention dozens of other such examples of tomatoes that farmers have developed over centuries through careful selection, rather than artificially engineered in the laboratory. And we would prefer a future where the value of naturally flavorful tomatoes is appreciated once more.

Images: Science Magazine, Western Gardens

First offical Slow Food conference in Iran

Slow Food rememebers Predrag Matvejevic

Read the rest here:
Saving the flavors of centuries: against Flavr Savr and the genetic engineering of taste - Slow food

Posted in Genetic Engineering | Comments Off on Saving the flavors of centuries: against Flavr Savr and the genetic engineering of taste – Slow food

Genetic Engineering: CRISPR Technology Makes Cows Resist … – Medical Daily

Posted: at 2:49 pm

Scientists have used a gene-editing technology to make cows more resistant to tuberculosis.

The researchers used a tool called CRISPR-Cas9, by which scientists can make changes to DNA in order to potentially make creatures more resistant to diseases, correct detrimental genetic mutations and other applications. In this case, they inserted a gene into cows that would make them resistant to bovine tuberculosis, then successfully bred that resistance into their offspring. Their findings were reported in the journal Genome Biology, with the authors saying the result demonstrates a possible use of the technology and contributes to the concept of gene-editing for agricultural purposes.

Read: The Danger of a Genetically Engineered Virus

Importantly, our method produced no off-target effects on the cow genetics, lead author Dr. Yong Zhang explained, according to the Daily Mail.

A gene-editing technology has created cows that are resistant to tuberculosis. Pixabay. public domain

The researchers from Northwest A&F University in Xianyang, China, wrote in their study that those off-target effects unintended and unrelated results are an issue when it comes to animals whose genes have been purposely modified.

Although it holds great potential to cure or treat disease and other ailments, CRISPR remains a controversial technology, with some people fearing it will be used to create designer babies or be used for unethical purposes.

Source: Zhang Y, Gao Y, Wu H, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology. 2017.

See also:

How Milk Is Made and Why Humans Drink It

6 Signs of Lactose Intolerance

Read this article:
Genetic Engineering: CRISPR Technology Makes Cows Resist ... - Medical Daily

Posted in Genetic Engineering | Comments Off on Genetic Engineering: CRISPR Technology Makes Cows Resist … – Medical Daily

Why You Are Short (Or Tall): Human Genetics, Explained – Medical Daily

Posted: at 2:49 pm

If you feel youre too short or too tall you can blame your genes. And it looks like theres plenty of blame to go around.

A study in Naturehas identified dozens of infrequently occurring genetic variants that are associated with human height to a moderate or large degree, some of them carrying an influence of up to 2 centimeters (more than of an inch). A number of the DNA elements are tied to genes already known to affect growth, such as those affecting bones and hormones, but others represent new processes involved in growth and height. That latter group could potentially lead scientists to new treatments for growth disorders.

Read: Technology To Change Genes Could End Tuberculosis

In the context of precision medicine, the results also bring hope to understand the genetic basis of complex diseases such as diabetes or schizophrenia, according to the Swiss Institute of Bioinformatics. The idea is that if we can understand the genetics of a simple human trait like height, we could then apply this knowledge to develop tools to predict complex human diseases, researcher Zoltn Kutalik said in the institutes statement.

According to SIB, the research relied on the international effort of more than 300 scientists and pulled DNA data from more than 700,000 people.

Your body might contain genes that can add up to 2 centimeters to your height. Pixabay, public domain

While previous research has fingered hundreds of genetic variants for playing a role in height, the Nature study notes that those variants are much more common, butplay only a marginal role in a persons measurement. The newly discovered variants have greater than 10 times the average effect of common variants.

While DNA plays the biggest role in how tall we are, our diet and our environment also influence how we measure up. For instance, Scientific Americannotes that protein is the most important nutrient for final height. Minerals such as calcium, vitamin A and vitamin D are also significant. Because of this, malnutrition in childhood is detrimental to height.

Source: Marouli E, Graff M, Medina-Gomez C, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017.

See also:

Genes Tell Us Whether Youll Drop Out of School

How a Blood Transfusion Changes Your DNA

How Evolution Will Change Our Bodies

Read more:
Why You Are Short (Or Tall): Human Genetics, Explained - Medical Daily

Posted in Human Genetics | Comments Off on Why You Are Short (Or Tall): Human Genetics, Explained – Medical Daily

Genetic study uncovers potential new treatments for inflammatory … – Science Daily

Posted: at 2:49 pm

Genetic study uncovers potential new treatments for inflammatory ...
Science Daily
Researchers have studied over ten million DNA variations and found new links between the human genome and inflammation tracers. The study uncovered new ...

and more »

Read the original here:
Genetic study uncovers potential new treatments for inflammatory ... - Science Daily

Posted in Human Genetics | Comments Off on Genetic study uncovers potential new treatments for inflammatory … – Science Daily

Research finds strategy that may treat juvenile Batten disease – Baylor College of Medicine News (press release)

Posted: at 2:49 pm

Testing a treatment for juvenile Batten disease in a mouse model of the condition

The scientists tested the effect of trehalose in a mouse model of juvenile Batten disease.

We dissolved trehalose in drinking water and gave it to mice that model juvenile Batten disease, said Sardiello. Then, over time we examined the mices brain cells under the microscope. We found that the continuous administration of trehalose inhibits Akt and activates TFEB in the brains of the mice. More active TFEB meant more lysosomes in the brain and increased lysosomal activity, followed by decreased accumulation of the storage material and reduced tissue inflammation, which is one of the main features of this disease in people, and reduced neurodegeneration. These changes resulted in the mice living significantly longer. This is a good start toward finding a treatment for people with this disease.

We are very excited that these findings put research a step closer to understanding the mechanisms that underlie human lysosomal storage diseases, said Palmieri. We hope that our research will help us design treatments to counteract this and other human diseases with a pathological storage component, such as Alzheimers, Huntingtons and Parkinsons diseases, and hopefully ameliorate the symptoms or reduce the progression of the disease for those affected.

The following researchers also contributed to this work: Rituraj Pal, Hemanth R. Nelvagal, Parisa Lotfi, Gary R. Stinnett, Michelle L. Seymour, Arindam Chaudhury, Lakshya Bajaj, Vitaliy V. Bondar, Laura Bremner, Usama Saleem, Dennis Y. Tse, Deepthi Sanagasetti, Samuel M. Wu, Joel R. Neilson, Fred A. Pereira, Robia G. Pautler, George G. Rodney and Jonathan D. Cooper.

This work was supported by NIH grant NS079618, grants from the Beyond Batten Disease Foundation, March of Dimes Foundation grant #5-FY12-114, and a Kings College London Graduate School International Studentship. This project was also supported in part by the Hamill Foundation and by IDDRC grant number 1U54 HD083092 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Cores: Mouse Neurobehavior, RNA In Situ Hybridization, and Integrated Microscopy).

More information:

Visit here for more information about juvenile Batten disease.

Palmieri, M., et al., mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases, Nature Communications, February 2017, DOI: 10.1038/NCOMMS14338.

See the original post:
Research finds strategy that may treat juvenile Batten disease - Baylor College of Medicine News (press release)

Posted in Human Genetics | Comments Off on Research finds strategy that may treat juvenile Batten disease – Baylor College of Medicine News (press release)

Tom Brady, ‘super human’? How genetics may contribute to his … – Genetic Literacy Project

Posted: at 2:49 pm

[NFL quarterback Tom Bradys] age-39 season was statistically among the best of his 17-year career with the New England PatriotsWhats maybe most remarkable about his 2016 performance is that it came at an age by which many other luminaries of the positionhad already retired.

Bradys DNA does enable him to be bigger and faster and stronger than many of usBut its not one or even a few dozen specific genes that help him with that. Instead, hundreds, if not thousands, of genesdetermine features like body compositionSimply put, Brady likely doesnt have a superhuman mutation tucked into his genetic code.

Some scientists are focused on studying the connection between genes and injury risk, while others think that perhaps the intense training elite athletes go through can kick dormant genes into high gear. Certain types of training seem to activate genes that everyone has that will change muscular structure, even blood vessels, said K. Anders Ericsson, a psychology professor at Florida State University. Theres even compelling evidence that the heart will adapt to these kind of training conditions.

Its also possible that Bradys genetics could explain in part why he has been able to play nearly into his fifth decade. Just as a healthy lifestyle can keep ones fitness age below biological age, some experts believe people have internal aging clocks that tick away at different speeds.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Tom Brady: Ageless wonder

Here is the original post:
Tom Brady, 'super human'? How genetics may contribute to his ... - Genetic Literacy Project

Posted in Human Genetics | Comments Off on Tom Brady, ‘super human’? How genetics may contribute to his … – Genetic Literacy Project

Human Genetics Market Is Expecting Worldwide Growth By 2024 … – Digital Journal

Posted: at 2:49 pm

"Human Genetics Market Research Report - Global Forecast to 2024"

Human genetic market, by instruments (Accessories, Device), by end-user (Hospital, Clinic, Research center), by method (Prenatal, Molecular, cytogenetic, presymptomatic), by application (Forensic science institute) - Global Forecast 2024

Key Players of Human Genetics Market:

Market Segmentation:

Major Human Genetics Market by Methods: Cytogenetic, Molecular, Presymptomatic and Prenatal.

Human Genetics Market by Product: Consumables, Devices and Accessories.

Human Genetics Market by Applications: Research, Diagnostic and Forensic Science and Others.

Human Genetics Market by End-Users: hospitals, clinics, research centers and forensic departments.

Request a Sample Copy @ https://www.marketresearchfuture.com/sample_request/714

Human Genetics Market Growth Influencer:

The growth driver includes advancement of genetics testing technologies, rising genetic diseases, and rising awareness in terms of increasing knowledge about the potential benefits in genetic testing. Furthermore, aging population and increasing incidence of cancer cases are the other factors propelling growth of human genetics market.

The market for screening the newborns, diagnosing rare and fatal disorders, and predicting the probability of occurrence of abnormalities & diseases are likely to expand. Particularly, genetic tests to screen the newborns are expected to expand immensely over the coming years. Furthermore, the genetic disorders caused by microorganisms such Zika virus is one of the major concern behind of microcephaly. Microcephaly is a birth defect that is associated with a small head and incomplete brain development in newborns that transferred from mother to her child. Such, diseases are expected raise the application of the human genetic studies there by driving by the market. However, the high costing instruments and lack of experienced professionals are the major restraints for the growth of Human genetics market.

Access Report Details @ https://www.marketresearchfuture.com/reports/human-genetics-market

Human Genetics Market:

Genetics is the study of genes, their functions and their effects. Among the various types of genetics such as molecular genetics, developmental genetics, population genetics and quantitative genetics, human genetics is the study that deals with the inheritance occurs in human beings. It encompasses a variety of overlapping fields such as classical genetics, cytogenetic, molecular genetics, genomics and many more.

The study of human heredity occupies a central position in genetics. Much of this interest stems from a basic desire to know who humans are and why they are as they are. It can be useful as it can answer questions about human nature, understand the diseases and development of effective disease treatment, and understand genetics of human life. At a more practical level, an understanding of human heredity is of critical importance in the prediction, diagnosis, and treatment of diseases that have a genetic component.

About Market Research Future:

At Market Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), Raw Research Reports (3R), Continuous-Feed Research (CFR), and Market Research & Consulting Services.

MRFR team have supreme objective to provide the optimum quality market research and intelligence services to our clients. Our market research studies by products, services, technologies, applications, end users, and market players for global, regional, and country level market segments, enable our clients to see more, know more, and do more, which help to answer all their most important questions.

Contact:

Akash Anand

Market Research Future

Office No. 528, Amanora Chambers

Magarpatta Road, Hadapsar,

Pune - 411028

Maharashtra, India

+1 646 845 9312

Email: akash.anand@marketresearchfuture.com

Media Contact Company Name: Market Research Future Contact Person: Akash Anand Email: akash.anand@marketresearchfuture.com Phone: +1 646 845 9312 Address:Magarpatta Road, Hadapsar, Pune - 411028 Maharashtra, India City: Pune State: Maharashtra Country: India Website: https://www.marketresearchfuture.com/reports/data-analytics-market

Here is the original post:
Human Genetics Market Is Expecting Worldwide Growth By 2024 ... - Digital Journal

Posted in Human Genetics | Comments Off on Human Genetics Market Is Expecting Worldwide Growth By 2024 … – Digital Journal

The Genetics Of Human Height Revealed – Science 2.0

Posted: at 2:49 pm

A large-scale international study involving 700,000 participants has revealed 83 genetic variations controlling human height.

It is well-known that above-average-height parents often have above-average-height children just as below-average-height parents often have below-average-height children. Indeed, this observation suggests that parent-to-child transmission of genetic information is the primary factor that determines an individual's height.

To discover the 83 genetic variations, the research team measured the presence of 250,000 genetic variations in the study's 700,000 participants - an enormous job.

"Of these 83 genetic variations, some influence adult height by more than 2 centimetres, which is enormous," said Guillaume Lettre, a professor at Universit de Montral's Faculty of Medicine. "The genes affected by these genetic variations modulate, among other things, bone and cartilage development and growth hormone production and activation."

Human height as a starting point for precision medicine

"In our study, we used adult height as a simple observable physical trait to understand how information in our DNA can explain how we are all different," said Lettre. "The idea was that if we could understand the genetics of human height, we could then apply this knowledge to develop genetic tools to predict other traits or the risk of developing common diseases."

Which people will have a heart attack before age 55 despite having a healthy lifestyle? Which children will develop leukemia, and how will they respond to treatment? Questions like these are at the heart of precision medicine, an emerging approach to healthcare that involves customizing treatment and prevention to the individual patient. The results of this study on human height could help to identify genetic variations that influence the risk of developing human diseases, the researchers believe. Eventually, these variations will be valuable tools for practioners of precision medicine to use.

The genetics of human height and of growth problems

In regards to height, the researchers found several genes that may represent good therapeutic targets for growth problems often observed in children. For example, they demonstrated that variations that inactivate the gene STC2 increase the height of individuals who carry them in their DNA by acting on certain growth factors. "In this sense, evaluating whether drugs that block STC2 activity could have an impact on growth seems to us very promising," concluded Lettre.

Citation: Joel N. Hirschhorn, Panos Deloukas, Guillaume Lettre, et al. "Rare and low-frequency coding variants alter human adult height", Nature, February 1st, 2017. DOI:10.1038/nature21039

The rest is here:
The Genetics Of Human Height Revealed - Science 2.0

Posted in Human Genetics | Comments Off on The Genetics Of Human Height Revealed – Science 2.0

Page 2,095«..1020..2,0942,0952,0962,097..2,1002,110..»