The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Category Archives: Transhuman News
Fluent BioSciences showcasing breakthrough solutions to enable unprecedented scale, cost-efficiency and access for single-cell RNA sequencing at the…
Posted: October 28, 2022 at 3:55 am
Posted in Human Genetics
Comments Off on Fluent BioSciences showcasing breakthrough solutions to enable unprecedented scale, cost-efficiency and access for single-cell RNA sequencing at the…
Occupy Mars: The Game on Steam
Posted: October 25, 2022 at 9:31 pm
Occupy Mars is a highly technical, open-world sandbox game about Mars colonization inspired by the most promising technologies and companies that are working toward becoming a multi-planet species. Build and upgrade your base, discover new amazing regions, conduct mining operations, retrieve water, generate oxygen, grow crops, fix broken parts, and learn how to survive on Mars!
Have you ever dreamt about visiting Mars? We always do! There are so many things to see and discover on the red planet, so many exciting technologies to be created, and so many challenges to overcome! If humanity can do this, we can become a multi-planet civilization!
Build and upgrade your base. Make sure that there is enough water, oxygen, power, and food to survive.
Build greenhouses, oxygen tanks, fuel generators, connect all the pipes and cables, and remember about proper cable management. Grow your own food.
Fix broken parts using realistic electronic components and tools. Learn the basics soldering, using hot air, electronic measurement tools, and all the details necessary to fix your equipment.
Explore different regions of Mars while searching for valuable resources, discover mining sites, and find the best place to build a city.
Remember that you need to find a relatively leveled area with good access to underground water in a place where temperatures don't drop too much during the night.
Experience an open-world sandbox game with a realistic day/night cycle and overcome real challenges that colonists face. Build solar arrays and batteries for energy storage, upgrade them, and find the optimal way to power your colony.
Upgrade your vehicles and equipment in your garage. Organize your workshop and modify your rover. Change crane hydraulics, operate the robotic arm, dig for valuable resources, build mining rigs, and more...
Occupying Mars is not always easy. Sometimes things will explode, break or not go exactly as planned. Learn to cope with "Rapid Unscheduled Disassembly. Sometimes you have to really act quickly before you run out of air, food, or energy.
...but most importantly HAVE FUN on Mars!
Our previous game Rover Mechanic Simulator:https://store.steampowered.com/app/864680/
The rest is here:
Occupy Mars: The Game on Steam
Posted in Mars Colonization
Comments Off on Occupy Mars: The Game on Steam
Life on Mars – Wikipedia
Posted: at 9:31 pm
Scientific assessments on the microbial habitability of Mars
The possibilities of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.[1][2]
Scientific searches for evidence of life began in the 19th century and continue today via telescopic investigations and deployed probes. While early work focused on phenomenology and bordered on fantasy, the modern scientific inquiry has emphasized the search for water, chemical biosignatures in the soil and rocks at the planet's surface, and biomarker gases in the atmosphere.[3]
Mars is of particular interest for the study of the origins of life because of its similarity to the early Earth. This is especially true since Mars has a cold climate and lacks plate tectonics or continental drift, so it has remained almost unchanged since the end of the Hesperian period. At least two-thirds of Mars's surface is more than 3.5billion years old, and Mars may thus hold the best record of the prebiotic conditions leading to life, even if life does not or has never existed there,[4][5] which might have started developing as early as 4.48billion years ago.[6]
Following the confirmation of the past existence of surface liquid water, the Curiosity, Perseverance and Opportunity rovers started searching for evidence of past life, including a past biosphere based on autotrophic, chemotrophic, or chemolithoautotrophic microorganisms, as well as ancient water, including fluvio-lacustrine environments (plains related to ancient rivers or lakes) that may have been habitable.[7][8][9][10] The search for evidence of habitability, taphonomy (related to fossils), and organic compounds on Mars is now a primary NASA and ESA objective.
The findings of organic compounds inside sedimentary rocks and of boron on Mars are of interest as they are precursors for prebiotic chemistry. Such findings, along with previous discoveries that liquid water was clearly present on ancient Mars, further supports the possible early habitability of Gale Crater on Mars.[11][12] Currently, the surface of Mars is bathed with ionizing radiation, and Martian soil is rich in perchlorates toxic to microorganisms.[13][14] Therefore, the consensus is that if life existsor existedon Mars, it could be found or is best preserved in the subsurface, away from present-day harsh surface processes.
In June 2018, NASA announced the detection of seasonal variation of methane levels on Mars. Methane could be produced by microorganisms or by geological means.[15] The European ExoMars Trace Gas Orbiter started mapping the atmospheric methane in April 2018, and the 2022 ExoMars rover Rosalind Franklin was planned to drill and analyze subsurface samples before the programme's indefinite suspension, while the NASA Mars 2020 rover Perseverance, having landed successfully, will cache dozens of drill samples for their potential transport to Earth laboratories in the late 2020s or 2030s. As of February 8, 2021, an updated status of studies considering the possible detection of lifeforms on Venus (via phosphine) and Mars (via methane) was reported.[16]
Mars's polar ice caps were discovered in the mid-17th century.[citation needed] In the late 18th century, William Herschel proved they grow and shrink alternately, in the summer and winter of each hemisphere. By the mid-19th century, astronomers knew that Mars had certain other similarities to Earth, for example that the length of a day on Mars was almost the same as a day on Earth. They also knew that its axial tilt was similar to Earth's, which meant it experienced seasons just as Earth doesbut of nearly double the length owing to its much longer year. These observations led to increasing speculation that the darker albedo features were water and the brighter ones were land, whence followed speculation on whether Mars may be inhabited by some form of life.[17]
In 1854, William Whewell, a fellow of Trinity College, Cambridge, theorized that Mars had seas, land and possibly life forms.[18] Speculation about life on Mars exploded in the late 19th century, following telescopic observation by some observers of apparent Martian canalswhich were later found to be optical illusions. Despite this, in 1895, American astronomer Percival Lowell published his book Mars, followed by Mars and its Canals in 1906,[19] proposing that the canals were the work of a long-gone civilization.[20] This idea led British writer H. G. Wells to write The War of the Worlds in 1897, telling of an invasion by aliens from Mars who were fleeing the planet's desiccation.[21]
Spectroscopic analysis of Mars's atmosphere began in earnest in 1894, when U.S. astronomer William Wallace Campbell showed that neither water nor oxygen were present in the Martian atmosphere.[22] The influential observer Eugne Antoniadi used the 83-cm (32.6inch) aperture telescope at Meudon Observatory at the 1909 opposition of Mars and saw no canals, the outstanding photos of Mars taken at the new Baillaud dome at the Pic du Midi observatory also brought formal discredit to the Martian canals theory in 1909,[23] and the notion of canals began to fall out of favor.[22]
Chemical, physical, geological, and geographic attributes shape the environments on Mars. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential.[24] The two current ecological approaches for predicting the potential habitability of the Martian surface use 19 or 20 environmental factors, with an emphasis on water availability, temperature, the presence of nutrients, an energy source, and protection from solar ultraviolet and galactic cosmic radiation.[25][26]
Scientists do not know the minimum number of parameters for determination of habitability potential, but they are certain it is greater than one or two of the factors in the table below.[24] Similarly, for each group of parameters, the habitability threshold for each is to be determined.[24] Laboratory simulations show that whenever multiple lethal factors are combined, the survival rates plummet quickly.[27] There are no full-Mars simulations published yet that include all of the biocidal factors combined.[27] Furthermore, the possibility of Martian life having a far different biochemistry and habitability requirements than the terrestrial biosphere is an open question.
Recent models have shown that, even with a dense CO2 atmosphere, early Mars was colder than Earth has ever been.[28][29][30][31] Transiently warm conditions related to impacts or volcanism could have produced conditions favoring the formation of the late Noachian valley networks, even though the mid-late Noachian global conditions were probably icy. Local warming of the environment by volcanism and impacts would have been sporadic, but there should have been many events of water flowing at the surface of Mars.[31] Both the mineralogical and the morphological evidence indicates a degradation of habitability from the mid Hesperian onward. The exact causes are not well understood but may be related to a combination of processes including loss of early atmosphere, or impact erosion, or both.[31]
The loss of the Martian magnetic field strongly affected surface environments through atmospheric loss and increased radiation; this change significantly degraded surface habitability.[33] When there was a magnetic field, the atmosphere would have been protected from erosion by the solar wind, which would ensure the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars.[34] The loss of the atmosphere was accompanied by decreasing temperatures. Part of the liquid water inventory sublimed and was transported to the poles, while the rest becametrapped in permafrost, a subsurface ice layer.[31]
Observations on Earth and numerical modeling have shown that a crater-forming impact can result in the creation of a long-lasting hydrothermal system when ice is present in the crust. For example, a 130km large crater could sustain an active hydrothermal system for up to 2million years, that is, long enough for microscopic life to emerge,[31] but unlikely to have progressed any further down the evolutionary path.[35]
Soil and rock samples studied in 2013 by NASA's Curiosity rover's onboard instruments brought about additional information on several habitability factors.[36] The rover team identified some of the key chemical ingredients for life in this soil, including sulfur, nitrogen, hydrogen, oxygen, phosphorus and possibly carbon, as well as clay minerals, suggesting a long-ago aqueous environmentperhaps a lake or an ancient streambedthat had neutral acidity and low salinity.[36] On December 9, 2013, NASA reported that, based on evidence from Curiosity studying Aeolis Palus, Gale Crater contained an ancient freshwater lake which could have been a hospitable environment for microbial life.[37][38] The confirmation that liquid water once flowed on Mars, the existence of nutrients, and the previous discovery of a past magnetic field that protected the planet from cosmic and solar radiation,[39][40] together strongly suggest that Mars could have had the environmental factors to support life.[41][42] The assessment of past habitability is not in itself evidence that Martian life has ever actually existed. If it did, it was probably microbial, existing communally in fluids or on sediments, either free-living or as biofilms, respectively.[33] The exploration of terrestrial analogues provide clues as to how and where best look for signs of life on Mars.[43]
Impactite, shown to preserve signs of life on Earth, was discovered on Mars and could contain signs of ancient life, if life ever existed on the planet.[44]
On June 7, 2018, NASA announced that the Curiosity rover had discovered organic molecules in sedimentary rocks dating to three billion years old.[45][46] The detection of organic molecules in rocks indicate that some of the building blocks for life were present.[47][48]
Conceivably, if life exists (or existed) on Mars, evidence of life could be found, or is best preserved, in the subsurface, away from present-day harsh surface conditions.[49] Present-day life on Mars, or its biosignatures, could occur kilometers below the surface, or in subsurface geothermal hot spots, or it could occur a few meters below the surface. The permafrost layer on Mars is only a couple of centimeters below the surface, and salty brines can be liquid a few centimeters below that but not far down. Water is close to its boiling point even at the deepest points in the Hellas basin, and so cannot remain liquid for long on the surface of Mars in its present state, except after a sudden release of underground water.[50][51][52]
So far, NASA has pursued a "follow the water" strategy on Mars and has not searched for biosignatures for life there directly since the Viking missions. The consensus by astrobiologists is that it may be necessary to access the Martian subsurface to find currently habitable environments.[49]
In 1965, the Mariner 4 probe discovered that Mars had no global magnetic field that would protect the planet from potentially life-threatening cosmic radiation and solar radiation; observations made in the late 1990s by the Mars Global Surveyor confirmed this discovery.[53] Scientists speculate that the lack of magnetic shielding helped the solar wind blow away much of Mars's atmosphere over the course of several billion years.[54] As a result, the planet has been vulnerable to radiation from space for about 4billion years.[55]
Recent in-situ data from Curiosity rover indicates that ionizing radiation from galactic cosmic rays (GCR) and solar particle events (SPE) may not be a limiting factor in habitability assessments for present-day surface life on Mars. The level of 76 mGy per year measured by Curiosity is similar to levels inside the ISS.[56]
Curiosity rover measured ionizing radiation levels of 76 mGy per year.[57] This level of ionizing radiation is sterilizing for dormant life on the surface of Mars. It varies considerably in habitability depending on its orbital eccentricity and the tilt of its axis. If the surface life has been reanimated as recently as 450,000 years ago, then rovers on Mars could find dormant but still viable life at a depth of one meter below the surface, according to an estimate.[58] Even the hardiest cells known could not possibly survive the cosmic radiation near the surface of Mars since Mars lost its protective magnetosphere and atmosphere.[59][60] After mapping cosmic radiation levels at various depths on Mars, researchers have concluded that over time, any life within the first several meters of the planet's surface would be killed by lethal doses of cosmic radiation.[59][61][62] The team calculated that the cumulative damage to DNA and RNA by cosmic radiation would limit retrieving viable dormant cells on Mars to depths greater than 7.5 meters below the planet's surface.[61]Even the most radiation-tolerant terrestrial bacteria would survive in dormant spore state only 18,000 years at the surface; at 2 metersthe greatest depth at which the ExoMars rover will be capable of reachingsurvival time would be 90,000 to half a million years, depending on the type of rock.[63]
Data collected by the Radiation assessment detector (RAD) instrument on board the Curiosity rover revealed that the absorbed dose measured is 76 mGy/year at the surface,[64] and that "ionizing radiation strongly influences chemical compositions and structures, especially for water, salts, and redox-sensitive components such as organic molecules."[64] Regardless of the source of Martian organic compounds (meteoric, geological, or biological), its carbon bonds are susceptible to breaking and reconfiguring with surrounding elements by ionizing charged particle radiation.[64] These improved subsurface radiation estimates give insight into the potential for the preservation of possible organic biosignatures as a function of depth as well as survival times of possible microbial or bacterial life forms left dormant beneath the surface.[64] The report concludes that the in situ "surface measurementsand subsurface estimatesconstrain the preservation window for Martian organic matter following exhumation and exposure to ionizing radiation in the top few meters of the Martian surface."[64]
In September 2017, NASA reported Radiation levels on the surface of the planet Mars were temporarily doubled and were associated with an aurora 25 times brighter than any observed earlier, due to a major, and unexpected, solar storm in the middle of the month.[65]
On UV radiation, a 2014 report concludes [66] that "[T]he Martian UV radiation environment is rapidly lethal to unshielded microbes but can be attenuated by global dust storms and shielded completely by < 1 mm of regolith or by other organisms." In addition, laboratory research published in July 2017 demonstrated that UV irradiated perchlorates cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60seconds of exposure.[67][68] The penetration depth of UV radiation into soils is in the sub-millimeter to millimeter range and depends on the properties of the soil.[68]
The Martian regolith is known to contain a maximum of 0.5% (w/v) perchlorate (ClO4) that is toxic for most living organisms,[69] but since they drastically lower the freezing point of water and a few extremophiles can use it as an energy source (see Perchlorates - Biology) and grow at concentrations of up to 30% (w/v) sodium perchlorate[70] by physiologically adapting to increasing perchlorate concentrations,[71] it has prompted speculation of what their influence would be on habitability.[67][70][72][73][74]
Research published in July 2017 shows that when irradiated with a simulated Martian UV flux, perchlorates become even more lethal to bacteria (bactericide). Even dormant spores lost viability within minutes.[67] In addition, two other compounds of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60seconds of exposure.[67][68] It was also found that abraded silicates (quartz and basalt) lead to the formation of toxic reactive oxygen species.[75] The researchers concluded that "the surface of Mars is lethal to vegetative cells and renders much of the surface and near-surface regions uninhabitable."[76] This research demonstrates that the present-day surface is more uninhabitable than previously thought,[67][77] and reinforces the notion to inspect at least a few meters into the ground to ensure the levels of radiation would be relatively low.[77][78]
However, researcher Kennda Lynch discovered the first-known instance of a habitat containing perchlorates and perchlorates-reducing bacteria in an analog environment: a paleolake in Pilot Valley, Great Salt Lake Desert, Utah.[79] She has been studying the biosignatures of these microbes, and is hoping that the Mars Perseverance rover will find matching biosignatures at its Jezero Crater site.[80][81]
Recurrent slope lineae (RSL) features form on Sun-facing slopes at times of the year when the local temperatures reach above the melting point for ice. The streaks grow in spring, widen in late summer and then fade away in autumn. This is hard to model in any other way except as involving liquid water in some form, though the streaks themselves are thought to be a secondary effect and not a direct indication of the dampness of the regolith. Although these features are now confirmed to involve liquid water in some form, the water could be either too cold or too salty for life. At present they are treated as potentially habitable, as "Uncertain Regions, to be treated as Special Regions".).[82][83] They were suspected as involving flowing brines back then.[84][85][86][87]
The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments, and there are indications that the brine ionic strength is a barrier to the habitability of Mars. Experiments show that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of divalent ions, "renders these environments uninhabitable despite the presence of biologically available water."[88]
After carbon, nitrogen is arguably the most important element needed for life. Thus, measurements of nitrate over the range of 0.1% to 5% are required to address the question of its occurrence and distribution. There is nitrogen (as N2) in the atmosphere at low levels, but this is not adequate to support nitrogen fixation for biological incorporation.[89] Nitrogen in the form of nitrate could be a resource for human exploration both as a nutrient for plant growth and for use in chemical processes. On Earth, nitrates correlate with perchlorates in desert environments, and this may also be true on Mars. Nitrate is expected to be stable on Mars and to have formed by thermal shock from impact or volcanic plume lightning on ancient Mars.[90]
On March 24, 2015, NASA reported that the SAM instrument on the Curiosity rover detected nitrates by heating surface sediments. The nitrogen in nitrate is in a "fixed" state, meaning that it is in an oxidized form that can be used by living organisms. The discovery supports the notion that ancient Mars may have been hospitable for life.[90][91][92] It is suspected that all nitrate on Mars is a relic, with no modern contribution.[93] Nitrate abundance ranges from non-detection to 681 304mg/kg in the samples examined until late 2017.[93] Modeling indicates that the transient condensed water films on the surface should be transported to lower depths (10 m) potentially transporting nitrates, where subsurface microorganisms could thrive.[94]
In contrast, phosphate, one of the chemical nutrients thought to be essential for life, is readily available on Mars.[95]
Further complicating estimates of the habitability of the Martian surface is the fact that very little is known about the growth of microorganisms at pressures close to those on the surface of Mars. Some teams determined that some bacteria may be capable of cellular replication down to 25 mbar, but that is still above the atmospheric pressures found on Mars (range 114 mbar).[96] In another study, twenty-six strains of bacteria were chosen based on their recovery from spacecraft assembly facilities, and only Serratia liquefaciens strain ATCC 27592 exhibited growth at 7 mbar, 0C, and CO2-enriched anoxic atmospheres.[96]
Liquid water is a necessary but not sufficient condition for life as humans know it, as habitability is a function of a multitude of environmental parameters.[97] Liquid water cannot exist on the surface of Mars except at the lowest elevations for minutes or hours.[98][99] Liquid water does not appear at the surface itself,[100] but it could form in minuscule amounts around dust particles in snow heated by the Sun.[101][102][unreliable source?] Also, the ancient equatorial ice sheets beneath the ground may slowly sublimate or melt, accessible from the surface via caves.[103][104][105][106]
Water on Mars exists almost exclusively as water ice, located in the Martian polar ice caps and under the shallow Martian surface even at more temperate latitudes.[110][111] A small amount of water vapor is present in the atmosphere.[112] There are no bodies of liquid water on the Martian surface because its atmospheric pressure at the surface averages 600 pascals (0.087psi)about 0.6% of Earth's mean sea level pressureand because the temperature is far too low, (210K (63C)) leading to immediate freezing. Despite this, about 3.8billion years ago,[113] there was a denser atmosphere, higher temperature, and vast amounts of liquid water flowed on the surface,[114][115][116][117] including large oceans.[118][119][120][121][122]
It has been estimated that the primordial oceans on Mars would have covered between 36%[123] and 75% of the planet.[124] On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.[107][108][109]Analysis of Martian sandstones, using data obtained from orbital spectrometry, suggests that the waters that previously existed on the surface of Mars would have had too high a salinity to support most Earth-like life. Tosca et al. found that the Martian water in the locations they studied all had water activity, aw 0.78 to 0.86a level fatal to most Terrestrial life.[125] Haloarchaea, however, are able to live in hypersaline solutions, up to the saturation point.[126]
In June 2000, possible evidence for current liquid water flowing at the surface of Mars was discovered in the form of flood-like gullies.[127][128] Additional similar images were published in 2006, taken by the Mars Global Surveyor, that suggested that water occasionally flows on the surface of Mars. The images showed changes in steep crater walls and sediment deposits, providing the strongest evidence yet that water coursed through them as recently as several years ago.
There is disagreement in the scientific community as to whether or not the recent gully streaks were formed by liquid water. Some suggest the flows were merely dry sand flows.[129][130][131] Others suggest it may be liquid brine near the surface,[132][133][134] but the exact source of the water and the mechanism behind its motion are not understood.[135]
In July 2018, scientists reported the discovery of a subglacial lake on Mars, 1.5km (0.93mi) below the southern polar ice cap, and extending sideways about 20km (12mi), the first known stable body of water on the planet.[136][137][138][139] The lake was discovered using the MARSIS radar on board the Mars Express orbiter, and the profiles were collected between May 2012 and December 2015.[140] The lake is centered at 193E, 81S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side, where there is a depression.[136]
In May 2007, the Spirit rover disturbed a patch of ground with its inoperative wheel, uncovering an area 90% rich in silica.[141] The feature is reminiscent of the effect of hot spring water or steam coming into contact with volcanic rocks. Scientists consider this as evidence of a past environment that may have been favorable for microbial life and theorize that one possible origin for the silica may have been produced by the interaction of soil with acid vapors produced by volcanic activity in the presence of water.[142]
Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures.[143][144][145] For this reason, hydrothermal deposits are regarded as important targets in the exploration for fossil evidence of ancient Martian life.[146][147][148]
In May 2017, evidence of the earliest known life on land on Earth may have been found in 3.48-billion-year-old geyserite and other related mineral deposits (often found around hot springs and geysers) uncovered in the Pilbara Craton of Western Australia.[149][150] These findings may be helpful in deciding where best to search for early signs of life on the planet Mars.[149][150]
Methane (CH4) is chemically unstable in the current oxidizing atmosphere of Mars. It would quickly break down due to ultraviolet radiation from the Sun and chemical reactions with other gases. Therefore, a persistent presence of methane in the atmosphere may imply the existence of a source to continually replenish the gas.
Trace amounts of methane, at the level of several parts per billion (ppb), were first reported in Mars's atmosphere by a team at the NASA Goddard Space Flight Center in 2003.[151][152] Large differences in the abundances were measured between observations taken in 2003 and 2006, which suggested that the methane was locally concentrated and probably seasonal.[153] On June 7, 2018, NASA announced it has detected a seasonal variation of methane levels on Mars.[15][154][47][48][155][156][157][46]
The ExoMars Trace Gas Orbiter (TGO), launched in March 2016, began on April 21, 2018, to map the concentration and sources of methane in the atmosphere,[158][159] as well as its decomposition products such as formaldehyde and methanol. As of May 2019, the Trace Gas Orbiter showed that the concentration of methane is under detectable level (< 0.05 ppbv).[160][161]
Curiosity detected a cyclical seasonal variation in atmospheric methane.
The principal candidates for the origin of Mars's methane include non-biological processes such as water-rock reactions, radiolysis of water, and pyrite formation, all of which produce H2 that could then generate methane and other hydrocarbons via FischerTropsch synthesis with CO and CO2.[162] It has also been shown that methane could be produced by a process involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.[163] Although geologic sources of methane such as serpentinization are possible, the lack of current volcanism, hydrothermal activity or hotspots[164] are not favorable for geologic methane.
Living microorganisms, such as methanogens, are another possible source, but no evidence for the presence of such organisms has been found on Mars,[165][166][167] until June 2019 as methane was detected by the Curiosity rover.[168] Methanogens do not require oxygen or organic nutrients, are non-photosynthetic, use hydrogen as their energy source and carbon dioxide (CO2) as their carbon source, so they could exist in subsurface environments on Mars.[169] If microscopic Martian life is producing the methane, it probably resides far below the surface, where it is still warm enough for liquid water to exist.[170]
Since the 2003 discovery of methane in the atmosphere, some scientists have been designing models and in vitro experiments testing the growth of methanogenic bacteria on simulated Martian soil, where all four methanogen strains tested produced substantial levels of methane, even in the presence of 1.0wt% perchlorate salt.[171]
A team led by Levin suggested that both phenomenamethane production and degradationcould be accounted for by an ecology of methane-producing and methane-consuming microorganisms.[172][173]
Research at the University of Arkansas presented in June 2015 suggested that some methanogens could survive in Mars's low pressure. Rebecca Mickol found that in her laboratory, four species of methanogens survived low-pressure conditions that were similar to a subsurface liquid aquifer on Mars. The four species that she tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, and Methanococcus maripaludis.[169] In June 2012, scientists reported that measuring the ratio of hydrogen and methane levels on Mars may help determine the likelihood of life on Mars.[165][166] According to the scientists, "low H2/CH4 ratios (less than approximately 40)" would "indicate that life is likely present and active".[165] The observed ratios in the lower Martian atmosphere were "approximately 10 times" higher "suggesting that biological processes may not be responsible for the observed CH4".[165] The scientists suggested measuring the H2 and CH4 flux at the Martian surface for a more accurate assessment. Other scientists have recently reported methods of detecting hydrogen and methane in extraterrestrial atmospheres.[174][175]
Even if rover missions determine that microscopic Martian life is the seasonal source of the methane, the life forms probably reside far below the surface, outside of the rover's reach.[176]
In February 2005, it was announced that the Planetary Fourier Spectrometer (PFS) on the European Space Agency's Mars Express Orbiter had detected traces of formaldehyde in the atmosphere of Mars. Vittorio Formisano, the director of the PFS, has speculated that the formaldehyde could be the byproduct of the oxidation of methane and, according to him, would provide evidence that Mars is either extremely geologically active or harboring colonies of microbial life.[177][178] NASA scientists consider the preliminary findings well worth a follow-up but have also rejected the claims of life.[179][180]
The 1970s Viking program placed two identical landers on the surface of Mars tasked to look for biosignatures of microbial life on the surface. Of the four experiments performed by each Viking lander, only the 'Labeled Release' (LR) experiment gave a positive result for metabolism, while the other three did not detect organic compounds. The LR was a specific experiment designed to test only a narrowly defined critical aspect of the theory concerning the possibility of life on Mars; therefore, the overall results were declared inconclusive.[22] No Mars lander mission has found meaningful traces of biomolecules or biosignatures. The claim of extant microbial life on Mars is based on old data collected by the Viking landers, currently reinterpreted as sufficient evidence of life, mainly by Gilbert Levin,[181][182] Joseph D. Miller,[183] Navarro,[184] Giorgio Bianciardi and Patricia Ann Straat,[185] that the Viking LR experiments detected extant microbial life on Mars.
Assessments published in December 2010 by Rafael Navarro-Gonzles[186][187][188][189] indicate that organic compounds "could have been present" in the soil analyzed by both Viking 1 and 2. The study determined that perchloratediscovered in 2008 by Phoenix lander[190][191]can destroy organic compounds when heated, and produce chloromethane and dichloromethane as a byproduct, the identical chlorine compounds discovered by both Viking landers when they performed the same tests on Mars. Because perchlorate would have broken down any Martian organics, the question of whether or not Viking found organic compounds is still wide open.[192][193]
The Labeled Release evidence was not generally accepted initially, and, to this day lacks the consensus of the scientific community.[194]
As of 2018, there are 224 known Martian meteorites (some of which were found in several fragments).[195] These are valuable because they are the only physical samples of Mars available to Earth-bound laboratories. Some researchers have argued that microscopic morphological features found in ALH84001 are biomorphs, however this interpretation has been highly controversial and is not supported by the majority of researchers in the field.[196]
Seven criteria have been established for the recognition of past life within terrestrial geologic samples. Those criteria are:[196]
For general acceptance of past life in a geologic sample, essentially most or all of these criteria must be met. All seven criteria have not yet been met for any of the Martian samples.[196]
In 1996, the Martian meteorite ALH84001, a specimen that is much older than the majority of Martian meteorites that have been recovered so far, received considerable attention when a group of NASA scientists led by David S. McKay reported microscopic features and geochemical anomalies that they considered to be best explained by the rock having hosted Martian bacteria in the distant past. Some of these features resembled terrestrial bacteria, aside from their being much smaller than any known form of life. Much controversy arose over this claim, and ultimately all of the evidence McKay's team cited as evidence of life was found to be explainable by non-biological processes. Although the scientific community has largely rejected the claim ALH 84001 contains evidence of ancient Martian life, the controversy associated with it is now seen as a historically significant moment in the development of exobiology.[197][198]
The Nakhla meteorite fell on Earth on June 28, 1911, on the locality of Nakhla, Alexandria, Egypt.[199][200]
In 1998, a team from NASA's Johnson Space Center obtained a small sample for analysis. Researchers found preterrestrial aqueous alteration phases and objects[201] of the size and shape consistent with Earthly fossilized nanobacteria.Analysis with gas chromatography and mass spectrometry (GC-MS) studied its high molecular weight polycyclic aromatic hydrocarbons in 2000, and NASA scientists concluded that as much as 75% of the organic compounds in Nakhla "may not be recent terrestrial contamination".[196][202]
This caused additional interest in this meteorite, so in 2006, NASA managed to obtain an additional and larger sample from the London Natural History Museum. On this second sample, a large dendritic carbon content was observed. When the results and evidence were published in 2006, some independent researchers claimed that the carbon deposits are of biologic origin. It was remarked that since carbon is the fourth most abundant element in the Universe, finding it in curious patterns is not indicative or suggestive of biological origin.[203][204]
The Shergotty meteorite, a 4 kilograms (8.8lb) Martian meteorite, fell on Earth on Shergotty, India on August 25, 1865, and was retrieved by witnesses almost immediately.[205] It is composed mostly of pyroxene and thought to have undergone preterrestrial aqueous alteration for several centuries. Certain features in its interior suggest remnants of a biofilm and its associated microbial communities.[196]
Yamato 000593 is the second largest meteorite from Mars found on Earth. Studies suggest the Martian meteorite was formed about 1.3billion years ago from a lava flow on Mars. An impact occurred on Mars about 12million years ago and ejected the meteorite from the Martian surface into space. The meteorite landed on Earth in Antarctica about 50,000 years ago. The mass of the meteorite is 13.7kg (30lb) and it has been found to contain evidence of past water movement.[206][207][208] At a microscopic level, spheres are found in the meteorite that are rich in carbon compared to surrounding areas that lack such spheres. The carbon-rich spheres may have been formed by biotic activity according to NASA scientists.[206][207][208]
Organismsubstrate interactions and their products are important biosignatures on Earth as they represent direct evidence of biological behaviour.[209] It was the recovery of fossilized products of life-substrate interactions (ichnofossils) that has revealed biological activities in the early history of life on the Earth,e.g., Proterozoic burrows, Archean microborings and stromatolites.[210][211][212][213][214][215] Two major ichnofossil-like structures have been reported from Mars, i.e. the stick-like structures from Vera Rubin Ridge and the microtunnels from Martian Meteorites.
Observations at Vera Rubin Ridge by the Mars Space Laboratory rover Curiosity show millimetric, elongate structures preserved in sedimentary rocks deposited in fluvio-lacustrine environments within Gale Crater. Morphometric and topologic data are unique to the stick-like structures among Martian geological features and show that ichnofossils are among the closest morphological analogues of these unique features.[216] Nevertheless, available data cannot fully disprove two major abiotic hypotheses, that are sedimentary cracking and evaporitic crystal growth as genetic processes for the structures.
Microtunnels have been described from Martian meteorites. They consist of straight to curved microtunnels that may contain areas of enhanced carbon abundance. The morphology of the curved microtunnels is consistent with biogenic traces on Earth, including microbioerosion traces observed in basaltic glasses.[217][218][215] Further studies are needed to confirm biogenicity.
Artist's concept showing sand-laden jets erupt from geysers on Mars.
Close up of dark dune spots, probably created by cold geyser-like eruptions.
The seasonal frosting and defrosting of the southern ice cap results in the formation of spider-like radial channels carved on 1-meter thick ice by sunlight. Then, sublimed CO2 and probably water increase pressure in their interior producing geyser-like eruptions of cold fluids often mixed with dark basaltic sand or mud.[219][220][221][222] This process is rapid, observed happening in the space of a few days, weeks or months, a growth rate rather unusual in geology especially for Mars.[223]
A team of Hungarian scientists propose that the geysers' most visible features, dark dune spots and spider channels, may be colonies of photosynthetic Martian microorganisms, which over-winter beneath the ice cap, and as the sunlight returns to the pole during early spring, light penetrates the ice, the microorganisms photosynthesize and heat their immediate surroundings. A pocket of liquid water, which would normally evaporate instantly in the thin Martian atmosphere, is trapped around them by the overlying ice. As this ice layer thins, the microorganisms show through grey. When the layer has completely melted, the microorganisms rapidly desiccate and turn black, surrounded by a grey aureole.[224][225][226] The Hungarian scientists believe that even a complex sublimation process is insufficient to explain the formation and evolution of the dark dune spots in space and time.[227][228] Since their discovery, fiction writer Arthur C. Clarke promoted these formations as deserving of study from an astrobiological perspective.[229]
A multinational European team suggests that if liquid water is present in the spiders' channels during their annual defrost cycle, they might provide a niche where certain microscopic life forms could have retreated and adapted while sheltered from solar radiation.[230] A British team also considers the possibility that organic matter, microbes, or even simple plants might co-exist with these inorganic formations, especially if the mechanism includes liquid water and a geothermal energy source.[223] They also remark that the majority of geological structures may be accounted for without invoking any organic "life on Mars" hypothesis.[223] It has been proposed to develop the Mars Geyser Hopper lander to study the geysers up close.[231]
Planetary protection of Mars aims to prevent biological contamination of the planet.[232] A major goal is to preserve the planetary record of natural processes by preventing human-caused microbial introductions, also called forward contamination. There is abundant evidence as to what can happen when organisms from regions on Earth that have been isolated from one another for significant periods of time are introduced into each other's environment. Species that are constrained in one environment can thrive often out of control in another environment much to the detriment of the original species that were present. In some ways, this problem could be compounded if life forms from one planet were introduced into the totally alien ecology of another world.[233]
The prime concern of hardware contaminating Mars derives from incomplete spacecraft sterilization of some hardy terrestrial bacteria (extremophiles) despite best efforts.[26][234] Hardware includes landers, crashed probes, end-of-mission disposal of hardware, and the hard landing of entry, descent, and landing systems. This has prompted research on survival rates of radiation-resistant microorganisms including the species Deinococcus radiodurans and genera Brevundimonas, Rhodococcus, and Pseudomonas under simulated Martian conditions.[235] Results from one of these experimental irradiation experiments, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30cm deep in Martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.[235] The diurnal Mars-like cycles in temperature and relative humidity affected the viability of Deinococcus radiodurans cells quite severely.[236] In other simulations, Deinococcus radiodurans also failed to grow under low atmospheric pressure, under 0C, or in the absence of oxygen.[237]
Since the 1950s, researchers have used containers that simulate environmental conditions on Mars to determine the viability of a variety of lifeforms on Mars. Such devices, called "Mars jars" or "Mars simulation chambers", were first described and used in U.S. Air Force research in the 1950s by Hubertus Strughold, and popularized in civilian research by Joshua Lederberg and Carl Sagan.[238]
On April 26, 2012, scientists reported that an extremophile lichen survived and showed remarkable results on the adaptation capacity of photosynthetic activity within the simulation time of 34 days under Martian conditions in the Mars Simulation Laboratory (MSL) maintained by the German Aerospace Center (DLR).[239][240][242][243][244] The ability to survive in an environment is not the same as the ability to thrive, reproduce, and evolve in that same environment, necessitating further study.[27][26]
Although numerous studies point to resistance to some of Mars conditions, they do so separately, and none has considered the full range of Martian surface conditions, including temperature, pressure, atmospheric composition, radiation, humidity, oxidizing regolith, and others, all at the same time and in combination.[245] Laboratory simulations show that whenever multiple lethal factors are combined, the survival rates plummet quickly.[27]
Astrobiologists funded by NASA are researching the limits of microbial life in solutions with high salt concentrations at low temperature.[246] Any body of liquid water under the polar ice caps or underground is likely to exist under high hydrostatic pressure and have a significant salt concentration. They know that the landing site of Phoenix lander, was found to be regolith cemented with water ice and salts, and the soil samples likely contained magnesium sulfate, magnesium perchlorate, sodium perchlorate, potassium perchlorate, sodium chloride and calcium carbonate.[246][247][248] Earth bacteria capable of growth and reproduction in the presence of highly salted solutions, called halophile or "salt-lover", were tested for survival using salts commonly found on Mars and at decreasing temperatures.[246] The species tested include Halomonas, Marinococcus, Nesterenkonia, and Virgibacillus.[246] Laboratory simulations show that whenever multiple Martian environmental factors are combined, the survival rates plummet quickly,[27] however, halophile bacteria were grown in a lab in water solutions containing more than 25% of salts common on Mars, and starting in 2019, the experiments will incorporate exposure to low temperature, salts, and high pressure.[246]
Mars-1 was the first spacecraft launched to Mars in 1962,[249] but communication was lost while en route to Mars. With Mars-2 and Mars-3 in 19711972, information was obtained on the nature of the surface rocks and altitude profiles of the surface density of the soil, its thermal conductivity, and thermal anomalies detected on the surface of Mars. The program found that its northern polar cap has a temperature below 110C (166F) and that the water vapor content in the atmosphere of Mars is five thousand times less than on Earth. No signs of life were found.[250]
Mariner Crater, as seen by Mariner 4 in 1965. Pictures like this suggested that Mars is too dry for any kind of life.
Mariner 4 probe performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface in 1965. The photographs showed an arid Mars without rivers, oceans, or any signs of life. Further, it revealed that the surface (at least the parts that it photographed) was covered in craters, indicating a lack of plate tectonics and weathering of any kind for the last 4billion years. The probe also found that Mars has no global magnetic field that would protect the planet from potentially life-threatening cosmic rays. The probe was able to calculate the atmospheric pressure on the planet to be about 0.6 kPa (compared to Earth's 101.3 kPa), meaning that liquid water could not exist on the planet's surface.[22] After Mariner 4, the search for life on Mars changed to a search for bacteria-like living organisms rather than for multicellular organisms, as the environment was clearly too harsh for these.[22][251][252]
Liquid water is necessary for known life and metabolism, so if water was present on Mars, the chances of it having supported life may have been determinant. The Viking orbiters found evidence of possible river valleys in many areas, erosion and, in the southern hemisphere, branched streams.[253][254][255]
The primary mission of the Viking probes of the mid-1970s was to carry out experiments designed to detect microorganisms in Martian soil because the favorable conditions for the evolution of multicellular organisms ceased some four billion years ago on Mars.[256] The tests were formulated to look for microbial life similar to that found on Earth. Of the four experiments, only the Labeled Release (LR) experiment returned a positive result,[dubious discuss] showing increased 14CO2 production on first exposure of soil to water and nutrients. All scientists agree on two points from the Viking missions: that radiolabeled 14CO2 was evolved in the Labeled Release experiment, and that the GCMS detected no organic molecules. There are vastly different interpretations of what those results imply: A 2011 astrobiology textbook notes that the GCMS was the decisive factor due to which "For most of the Viking scientists, the final conclusion was that the Viking missions failed to detect life in the Martian soil."[257]
Norman Horowitz was the head of the Jet Propulsion Laboratory bioscience section for the Mariner and Viking missions from 1965 to 1976. Horowitz considered that the great versatility of the carbon atom makes it the element most likely to provide solutions, even exotic solutions, to the problems of survival of life on other planets.[258] However, he also considered that the conditions found on Mars were incompatible with carbon based life.
One of the designers of the Labeled Release experiment, Gilbert Levin, believes his results are a definitive diagnostic for life on Mars.[22] Levin's interpretation is disputed by many scientists.[259] A 2006 astrobiology textbook noted that "With unsterilized Terrestrial samples, though, the addition of more nutrients after the initial incubation would then produce still more radioactive gas as the dormant bacteria sprang into action to consume the new dose of food. This was not true of the Martian soil; on Mars, the second and third nutrient injections did not produce any further release of labeled gas."[260] Other scientists argue that superoxides in the soil could have produced this effect without life being present.[261] An almost general consensus discarded the Labeled Release data as evidence of life, because the gas chromatograph and mass spectrometer, designed to identify natural organic matter, did not detect organic molecules.[181] More recently, high levels of organic chemicals, particularly chlorobenzene, were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover.[262][263] The results of the Viking mission concerning life are considered by the general expert community as inconclusive.[22][261][264]
In 2007, during a Seminar of the Geophysical Laboratory of the Carnegie Institution (Washington, D.C., US), Gilbert Levin's investigation was assessed once more.[181] Levin still maintains that his original data were correct, as the positive and negative control experiments were in order.[185] Moreover, Levin's team, on April 12, 2012, reported a statistical speculation, based on old datareinterpreted mathematically through cluster analysisof the Labeled Release experiments, that may suggest evidence of "extant microbial life on Mars".[185][265] Critics counter that the method has not yet been proven effective for differentiating between biological and non-biological processes on Earth so it is premature to draw any conclusions.[266]
A research team from the National Autonomous University of Mexico headed by Rafael Navarro-Gonzlez concluded that the GCMS equipment (TV-GC-MS) used by the Viking program to search for organic molecules, may not be sensitive enough to detect low levels of organics.[189] Klaus Biemann, the principal investigator of the GCMS experiment on Viking wrote a rebuttal.[267] Because of the simplicity of sample handling, TVGCMS is still considered the standard method for organic detection on future Mars missions, so Navarro-Gonzlez suggests that the design of future organic instruments for Mars should include other methods of detection.[189]
After the discovery of perchlorates on Mars by the Phoenix lander, practically the same team of Navarro-Gonzlez published a paper arguing that the Viking GCMS results were compromised by the presence of perchlorates.[268] A 2011 astrobiology textbook notes that "while perchlorate is too poor an oxidizer to reproduce the LR results (under the conditions of that experiment perchlorate does not oxidize organics), it does oxidize, and thus destroy, organics at the higher temperatures used in the Viking GCMS experiment."[269] Biemann has written a commentary critical of this Navarro-Gonzlez paper as well,[270] to which the latter have replied;[271] the exchange was published in December 2011.
The Phoenix mission landed a robotic spacecraft in the polar region of Mars on May 25, 2008, and it operated until November 10, 2008. One of the mission's two primary objectives was to search for a "habitable zone" in the Martian regolith where microbial life could exist, the other main goal being to study the geological history of water on Mars. The lander has a 2.5 meter robotic arm that was capable of digging shallow trenches in the regolith. There was an electrochemistry experiment which analysed the ions in the regolith and the amount and type of antioxidants on Mars. The Viking program data indicate that oxidants on Mars may vary with latitude, noting that Viking 2 saw fewer oxidants than Viking 1 in its more northerly position. Phoenix landed further north still.[272]Phoenix's preliminary data revealed that Mars soil contains perchlorate, and thus may not be as life-friendly as thought earlier.[273][274][191] The pH and salinity level were viewed as benign from the standpoint of biology. The analysers also indicated the presence of bound water and CO2.[275] A recent analysis of Martian meteorite EETA79001 found 0.6 ppm ClO4, 1.4 ppm ClO3, and 16 ppm NO3, most likely of Martian origin. The ClO3 suggests presence of other highly oxidizing oxychlorines such as ClO2 or ClO, produced both by UV oxidation of Cl and X-ray radiolysis of ClO4. Thus only highly refractory and/or well-protected (sub-surface) organics are likely to survive.[276] In addition, recent analysis of the Phoenix WCL showed that the Ca(ClO4)2 in the Phoenix soil has not interacted with liquid water of any form, perhaps for as long as 600 Myr. If it had, the highly soluble Ca(ClO4)2 in contact with liquid water would have formed only CaSO4. This suggests a severely arid environment, with minimal or no liquid water interaction.[277]
The Mars Science Laboratory mission is a NASA project that launched on November 26, 2011, the Curiosity rover, a nuclear-powered robotic vehicle, bearing instruments designed to assess past and present habitability conditions on Mars.[278][279] The Curiosity rover landed on Mars on Aeolis Palus in Gale Crater, near Aeolis Mons (a.k.a. Mount Sharp),[280][281][282][283] on August 6, 2012.[284][285][286]
On December 16, 2014, NASA reported the Curiosity rover detected a "tenfold spike", likely localized, in the amount of methane in the Martian atmosphere. Sample measurements taken "a dozen times over 20 months" showed increases in late 2013 and early 2014, averaging "7 parts of methane per billion in the atmosphere". Before and after that, readings averaged around one-tenth that level.[262][263] In addition, low levels of chlorobenzene (C6H5Cl), were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover.[262][263]
The Mars 2020 rover is a Mars planetary rover mission by NASA, launched on 30 July 2020. It is intended to investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability and potential for preservation of biosignatures within accessible geological materials.[288]
Some of the main reasons for colonizing Mars include economic interests, long-term scientific research best carried out by humans as opposed to robotic probes, and sheer curiosity. Surface conditions and the presence of water on Mars make it arguably the most hospitable of the planets in the Solar System, other than Earth. Human colonization of Mars would require in situ resource utilization (ISRU); A NASA report states that "applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing, and autonomy. These technologies combined with the vast natural resources should enable, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars."[291][292][293]
The rest is here:
Life on Mars - Wikipedia
Posted in Mars Colonization
Comments Off on Life on Mars – Wikipedia
Coeur dAlene student selected to be on the first high school-aged team to train in the Mars Desert Research Station – KREM.com
Posted: at 9:31 pm
Here is the original post:
Coeur dAlene student selected to be on the first high school-aged team to train in the Mars Desert Research Station - KREM.com
Posted in Mars Colonization
Comments Off on Coeur dAlene student selected to be on the first high school-aged team to train in the Mars Desert Research Station – KREM.com
The Ron Paul Institute for Peace and Prosperity : Europe Commits …
Posted: at 9:19 pm
A Swiss billboard is making the rounds on social media depicting a young woman on the telephone. The caption reads, "Does the neighbor heat the apartment to over 19 degrees (66F)? Please inform us." While the Swiss government has dismissed the poster as a fake, the penalties Swiss citizens face for daring to warm their homes are very real. According to the Swiss newspaper Blick, those who violate the 66 degree heating limit could face as many as three years in prison!
Prison time for heating your home? In the free world? How is it possible in 2022, when Switzerland and the rest of the political west have achieved the greatest economic success in history, that the European continent faces a winter like something out of the dark ages?
Sanctions.
While long promoted often by those opposed to war as a less destructive alternative to war, sanctions are in reality acts of war. And as we know with interventionism and war, the result is often unintended consequences and even blowback.
European sanctions against Russia over its invasion of Ukraine earlier this year will likely go down in history as a prime example of how sanctions can result in unintended consequences. While seeking to punish Russia by cutting off gas and oil imports, European Union politicians forgot that Europe is completely dependent on Russian energy supplies and that the only people to suffer if those imports are shut down are the Europeans themselves.
The Russians simply pivoted to the south and east and found plenty of new buyers in China, India, and elsewhere. In fact, Russias state-run Gazprom energy company has reported that its profits have increased by 100 percent in the first half of this year.
Russia is getting rich while Europeans are facing a freezing winter and economic collapse. All because of the false belief that sanctions are a cost-free way to force other countries to do what you want them to do.
What happens when the people see dumb government policies making energy bills skyrocket as the economy grounds to a halt? They become desperate and take to the streets in protest.
This weekend thousands of Austrians took to the streets in a Freedom Rally to demand an end to sanctions and the opening of Nord Stream II, the gas pipeline on the verge of opening earlier this year. Last week an estimated 100,000 Czechs took to the streets of Prague to protest NATO and EU policy. In France, the Yellow Vests are back in the streets protesting the destruction of their economy in the name of defeating Russia in Ukraine. In Germany, Serbia, and elsewhere, protests are gearing up.
Even the Washington Post was forced to admit that sanctions on Russia are not having the intended effect. In an article yesterday, the paper worries that sanctions are inflicting collateral damage in Russia and beyond, potentially even hurting the very countries that impose them. Some even worried that the sanctions intended to deter and weaken Putin could end up emboldening and strengthening him.
This is all predictable. Sanctions kill. Sometimes they kill innocents in the country targeted for destruction and sometimes they kill innocents in the country imposing them. The solution, as always, is non-intervention. No sanctions, no "color revolutions," no meddling. It's really that simple.
Read more here:
The Ron Paul Institute for Peace and Prosperity : Europe Commits ...
Posted in Ron Paul
Comments Off on The Ron Paul Institute for Peace and Prosperity : Europe Commits …
A futurist tells us what life will probably look like in 2040
Posted: at 9:13 pm
This week, UKs government set out plans to end the sale of new petrol and diesel cars by 2040 so what else will we see in 23 years time?
Here, with the help of Europes top futurist Ray Hammond, we create a picture of how the world might look in the post-petrol age.
We will all wear a huge range of sensors that will constantly monitor things such as blood pressure, blood sugar and blood oxygen level.
Longevity will rise, with many living well beyond 100.
Children born in 2040 will have a more or less indefinite life. With gene therapy, stem cell and nano-scale medicine, barring an accident or fatal disease, we may live for ever and look much younger. With exoskeletons artificial, externally-worn support structures the elderly will stay mobile for longer. Now they are bulky and rigid but they will be soft and comfy.
People will fall in love with robot partners, which will impact relationships.
As it is we have a habit of seeing human characteristics in inanimate objects and with robots growing more advanced, it is inevitable that some people will couple up with them.
Weddings will become rarer and promiscuity will go off the scale as social attitudes get more relaxed.
On average, women today have nine sexual partners in their lifetime and men have 11 expect that to rise to 100 for women and 200 for men.
Most cars will be driving themselves, with motorways and roads having self-driving lanes.
Driverless traffic could travel in convoys, forming road trains and allowing vehicles to drive much closer together, freeing up motorway space.
The only place where you could experience being in control of a car yourself would be a licensed race track.
Ahead of the ban on sales of new petrol and diesel cars in 2040, we can expect scrappage schemes during the 2030s which will phase them out. Our roads will look and sound very different.
As for air travel, there will not be huge changes. The dawn of electric and self-flying planes is possible but they will still be a small minority.
We will see hyper-loops transport tubes through which passenger pods can travel at up to 700 mph.
As the worlds population booms from the present seven billion to more than nine billion, we will not be able to farm meat as we have done up to now.
There wont be enough space for all the animals we would need plus their methane emissions could cause unsustainable environmental damage.
Instead, we will see artificial tissue meat grown in factories, without the need for a living animal.
Burgers have already been produced and eaten in a lab and by 2040 up to 40 percent of meat will be artificial or from substitutes such as plants. It will be engineered to look, taste and smell like the real thing.
Insects will also be a staple in products resembling their meat versions, such as sausages or burgers. They are protein-rich, cheaper and greener.
And with most people living in cities, crops may be grown on vertical farms up the sides of skyscrapers.
Our smartphones will have more or less disappeared, replaced by control centers which we will wear in a series of devices around our body.
For example, we will wear smart contact lenses, with texts floating in front of our eyes and earrings that send messages from a virtual assistant into our ears.
We wont look as if we are wearing anything extra but it will be as if we are looking through a smartphone at the real world, albeit one more powerful than anything we know today.
Our social networks will also become integral to the real world. We may see a stranger in the street and, using facial recognition software linked to our control centers, will instantly know their name and be able to access their profile.
As a result, privacy will be a hot topic.
We will have to face the question of whether machines will be our slaves or our masters.
Computers will be as good at problem-solving as humans, with the prospect of soon surpassing us.
Then the question will be whether we let them take control or try to regulate and modify artificial intelligence. Or genetically modify humans so we can compete with machines.
Our decisions could have profound effects on world order. If the West chooses to regulate its machines, it could be at a disadvantage compared to countries that allow computers to develop unchecked.
Today people are glued to phones and iPads but to imagine life in 2040, magnify that by 100.
We will spend most of our time in virtual worlds, whether at work or at leisure. Instead of looking at a device, we will experience this as if it were real. It wont even seem artificial. The novelty will be leaving the virtual world to meet humans in real life, an activity that will become rarer.
See the rest here:
A futurist tells us what life will probably look like in 2040
Posted in Futurist
Comments Off on A futurist tells us what life will probably look like in 2040
COVID is a ‘smart virus’ that can affect DNA but that doesn’t mean you can pass it on to your kids – The Conversation
Posted: at 9:12 pm
COVID is a 'smart virus' that can affect DNA but that doesn't mean you can pass it on to your kids The Conversation
See more here:
COVID is a 'smart virus' that can affect DNA but that doesn't mean you can pass it on to your kids - The Conversation
Posted in DNA
Comments Off on COVID is a ‘smart virus’ that can affect DNA but that doesn’t mean you can pass it on to your kids – The Conversation
Space Force building ground station in Alaska ahead of launch of Arctic …
Posted: at 9:00 pm
Satellite terminals in Alaska will be the main connection to the new EPS-R payloads that will launch in 2023
WASHINGTON The U.S. Space Force has started building a gateway site at Clear Space Force Station, Alaska, where it will operate two new polar communications payloads scheduled to launch in 2023 on a Space Norway mission.
The Space Systems Commands satellite communications office broke ground earlier this week to prepare the site to serve as a gateway for the Enhanced Polar Systems-Recapitalization (EPS-R) payloads, the command said in a news release.
Satcom terminals at Clear will be the main connection to the new EPS-R payloads that will launch next year on Space Norways Arctic Satellite Broadband Mission known as ASBM.
The EPS-R payloads, developed by Northrop Grumman, will fly to highly elliptical orbits on two ASBM satellites projected to launch on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California.
The EPS-R gateway segment is estimated to cost about $4 million. It also includes facilities at Naval Base Point Loma, and the Armys Camp Roberts, in California. Its a joint project led by the Space Force, the Naval Information Warfare Center and the U.S. Army Corps of Engineers.
The EPS-R are Extremely High Frequency Extended Data Rate payloads that will provide secure communications services for U.S. forces operating in the north polar region. The ASBM mission includes communications payloads for the Norwegian Ministry of Defense and for British satellite operator Inmarsat.
The two EPS-R payloads will augment two existing Enhanced Polar Systems satellites also made by Northrop Grumman.
The project has been praised by U.S. defense officials as an example of international cooperation on space programs.
The EPS-R system is crucial to multiple military services for warfighters in the polar region, said 1st Lt. Timothy Phelps, EPS-R gateway and terminals team lead.
Continued here:
Space Force building ground station in Alaska ahead of launch of Arctic ...
Posted in Space Station
Comments Off on Space Force building ground station in Alaska ahead of launch of Arctic …
Home – Human Longevity Institute
Posted: October 23, 2022 at 1:20 pm
Join The Future- Lead the Way to Longevity LivingHi, and Welcome- Im Dr. Melissa Petersen, the founder of the Human Longevity Institute.
We are sitting at an exciting time in human history. We are living longer, yet many would say, not better. But what if I were to tell you there is a new path forward?
The science is clear, we dont have to settle for a life of sickness and disease. We CAN compress the morbidity window, slow down and even reverse the biological aging process. We can now live more years free from sickness, and disease expressing greater health, vitality and wellbeing through applying the science and solutions of precision longevity.
Life in the 2020s has more people than ever seeking a new path to expressing health and happiness. People want solutions not another pill for an ill, this is where YOU can lead the way.
Several years ago, I launched the Longevity Summit and wrote the best-selling book, The Codes of Longevity. Thats when I found the desire from the consumer to learn what was possible in living longer and better was tremendous. I also discovered there is a huge gap in the longevity marketplace between consumer desire and clinical solutions.
This is why Im excited and honored to bring to you the Precision Longevity Certification Program. The first complete, complex systems clinical and coaching training that delivers research-backed age reversal protocols and solutions that will allow you to help more clients heal, thrive and live a long life optimized!
Become a part of this in-demand specialty today. Stand out as a leader in your community to set the path that will transform the health and lives of those you serve.
Together we can positively impact the lives of millions of people globally to more fully flourish and thrive by design to 120 and beyond. I invite you to become a part of the longevity living movement, request an application to get certified as together we help people live longer, healthier and more fulfilling lives.
See more here:
Home - Human Longevity Institute
Posted in Human Longevity
Comments Off on Home – Human Longevity Institute
Exercise: 7 benefits of regular physical activity – Mayo Clinic
Posted: at 1:20 pm
Exercise: 7 benefits of regular physical activity
You know exercise is good for you, but do you know how good? From boosting your mood to improving your sex life, find out how exercise can improve your life.
Want to feel better, have more energy and even add years to your life? Just exercise.
The health benefits of regular exercise and physical activity are hard to ignore. Everyone benefits from exercise, regardless of age, sex or physical ability.
Need more convincing to get moving? Check out these seven ways that exercise can lead to a happier, healthier you.
Exercise can help prevent excess weight gain or help maintain weight loss. When you engage in physical activity, you burn calories. The more intense the activity, the more calories you burn.
Regular trips to the gym are great, but don't worry if you can't find a large chunk of time to exercise every day. Any amount of activity is better than none at all. To reap the benefits of exercise, just get more active throughout your day take the stairs instead of the elevator or rev up your household chores. Consistency is key.
Worried about heart disease? Hoping to prevent high blood pressure? No matter what your current weight is, being active boosts high-density lipoprotein (HDL) cholesterol, the "good" cholesterol, and it decreases unhealthy triglycerides. This one-two punch keeps your blood flowing smoothly, which decreases your risk of cardiovascular diseases.
Regular exercise helps prevent or manage many health problems and concerns, including:
It can also help improve cognitive function and helps lower the risk of death from all causes.
Need an emotional lift? Or need to destress after a stressful day? A gym session or brisk walk can help. Physical activity stimulates various brain chemicals that may leave you feeling happier, more relaxed and less anxious.
You may also feel better about your appearance and yourself when you exercise regularly, which can boost your confidence and improve your self-esteem.
Winded by grocery shopping or household chores? Regular physical activity can improve your muscle strength and boost your endurance.
Exercise delivers oxygen and nutrients to your tissues and helps your cardiovascular system work more efficiently. And when your heart and lung health improve, you have more energy to tackle daily chores.
Struggling to snooze? Regular physical activity can help you fall asleep faster, get better sleep and deepen your sleep. Just don't exercise too close to bedtime, or you may be too energized to go to sleep.
Do you feel too tired or too out of shape to enjoy physical intimacy? Regular physical activity can improve energy levels and increase your confidence about your physical appearance, which may boost your sex life.
But there's even more to it than that. Regular physical activity may enhance arousal for women. And men who exercise regularly are less likely to have problems with erectile dysfunction than are men who don't exercise.
Exercise and physical activity can be enjoyable. They give you a chance to unwind, enjoy the outdoors or simply engage in activities that make you happy. Physical activity can also help you connect with family or friends in a fun social setting.
So take a dance class, hit the hiking trails or join a soccer team. Find a physical activity you enjoy, and just do it. Bored? Try something new, or do something with friends or family.
Exercise and physical activity are great ways to feel better, boost your health and have fun. For most healthy adults, the U.S. Department of Health and Human Services recommends these exercise guidelines:
Moderate aerobic exercise includes activities such as brisk walking, biking, swimming and mowing the lawn. Vigorous aerobic exercise includes activities such as running, heavy yardwork and aerobic dancing. Strength training can include use of weight machines, your own body weight, heavy bags, resistance tubing or resistance paddles in the water, or activities such as rock climbing.
If you want to lose weight, meet specific fitness goals or get even more benefits, you may need to ramp up your moderate aerobic activity even more.
Remember to check with your doctor before starting a new exercise program, especially if you have any concerns about your fitness, haven't exercised for a long time, have chronic health problems, such as heart disease, diabetes or arthritis.
Sign up for free, and stay up to date on research advancements, health tips and current health topics, like COVID-19, plus expertise on managing health.
To provide you with the most relevant and helpful information, and understand which information is beneficial, we may combine your email and website usage information with other information we have about you. If you are a Mayo Clinic patient, this could include protected health information. If we combine this information with your protected health information, we will treat all of that information as protected health information and will only use or disclose that information as set forth in our notice of privacy practices. You may opt-out of email communications at any time by clicking on the unsubscribe link in the e-mail.
Subscribe!
You'll soon start receiving the latest Mayo Clinic health information you requested in your inbox.
Please, try again in a couple of minutes
Retry
.
Original post:
Exercise: 7 benefits of regular physical activity - Mayo Clinic
Posted in Human Longevity
Comments Off on Exercise: 7 benefits of regular physical activity – Mayo Clinic