Page 1,140«..1020..1,1391,1401,1411,142..1,1501,160..»

Category Archives: Transhuman News

Indian SARS-CoV-2 Genomic Consortia (INSACOG) launched,coordinated by Department of Biotechnology (DBT) along with MoH&FW, ICMR, and CSIR – India…

Posted: January 3, 2021 at 9:40 pm

New Delhi: The government has launched the Indian SARS-CoV-2 Genomic Consortia (INSACOG), comprising 10 labs namely DBT-NIBMG Kalyani, DBT-ILS Bhubaneswar, ICMR-NIV Pune, DBT-NCCS Pune, CSIR-CCMB Hyderabad, DBT-CDFD Hyderabad, DBT-InSTEM/ NCBS Bengaluru, NIMHANS Bengaluru, CSIR-IGIB Delhi, and NCDC Delhi.

The overall aim of the Indian SARS-CoV-2 Genomics Consortium is to monitor the genomic variations in the SARS-CoV-2 on a regular basis through a multi-laboratory network. This vital research consortium will also assist in developing potential vaccines in the future. The consortium will ascertain the status of new variant of SARS-CoV-2 (SARS-CoV-2 VUI 202012/01) in the country, establish a sentinel surveillance for early detection of genomic variants with public health implication, and determine the genomic variants in the unusual events/trends (super-spreader events, high mortality/morbidity trend areas etc.).

Dr RenuSwarup, Secretary DBT, informed that INSACOG will have a high level Inter-Ministerial Steering Committee which will provide guidance and oversight to the consortium specially for policy matters and it will have a Scientific Advisory Group for scientific and technical guidance.

Coordinated by Department of Biotechnology (DBT) along with MoH&FW, ICMR, and CSIR, the strategy and roadmap of the National SARS CoV2 Genome Sequencing Consortium (INSACOG) has been prepared.

In the backdrop of the emergence of a newly identified variant of the novel SARS-CoV-2 Virus in the UK, South Africa and some other parts of the world, the Government has taken action to accelerate VirusSurveillance, Genome Sequencing and Characterization. A new variant, which that was found in the UK, especially in the London region, is defined by multiple mutations in the Spike region, as well as mutations in other genomic regions. As per DBTDBT, these mutations are rapidly increasing the number of variants of the virus. This variant is significantly more transmissible than previously circulating variants, with an estimated potential to increase the reproductive number with an estimated increased transmissibility of up to 70%, it said.

The Indian SARS-CoV-2 Genomics Consortium (INSACOG) will monitor the genomic variations on a regular basis through the multi-laboratory network. Knowledge generated though this vital research consortium will also assist in developing diagnostics and potential therapeutics and vaccines in the future.

DBT-NIBMG as the Co-ordinating Unit of Genome Sequencing Consortium and will closely work with a Nodal Unit of NCDCon activities like SOPs, data annotation, data analysis, data release etc.NCDC will maintain a database of all samples of the new variants of public health significance. The data will be epidemiologically analysed, interpreted and shared with state/district for investigation, contact tracing and planning response strategies.All the genomic sequencing data will be maintained in a National database at two sites, DBT-NIBMG, Kalyani and CSIR-IGIB, New Delhi. The virus isolated will be deposited in the notified SARS-CoV-2 virus repository etc RCB, Faridabad and NIV, Pune

See the rest here:
Indian SARS-CoV-2 Genomic Consortia (INSACOG) launched,coordinated by Department of Biotechnology (DBT) along with MoH&FW, ICMR, and CSIR - India...

Posted in Genome | Comments Off on Indian SARS-CoV-2 Genomic Consortia (INSACOG) launched,coordinated by Department of Biotechnology (DBT) along with MoH&FW, ICMR, and CSIR – India…

Common Brain Malformation Affecting About 1 in 100 Children Traced to Its Genetic Roots – SciTechDaily

Posted: at 9:37 pm

The lowest part of a childs brain is visible below the bottom of the skull in this MRI scan and shows evidence of a Chiari 1 malformation. Researchers at Washington University School of Medicine in St. Louis have shown that Chiari 1 malformation can be caused by variations in two genes linked to brain development, and that children with large heads are at increased risk of developing the condition. Credit: David Limbrick

Discovery could aid early screening, shed light on how Chiari malformation arises.

About one in 100 children has a common brain disorder called Chiari 1 malformation, but most of the time such children grow up normally and no one suspects a problem. But in about one in 10 of those children, the condition causes headaches, neck pain, hearing, vision and balance disturbances, or other neurological symptoms.

In some cases, the disorder may run in families, but scientists have understood little about the genetic alterations that contribute to the condition. In new research, scientists at Washington University School of Medicine in St. Louis have shown that Chiari 1 malformation can be caused by variations in two genes involved in brain development.

The condition occurs when the lowest parts of the brain are found below the base of the skull. The study also revealed that children with unusually large heads are four times more likely to be diagnosed with Chiari 1 malformation than their peers with normal head circumference.

The findings, published Dec. 21 in the American Journal of Human Genetics, could lead to new ways to identify people at risk of developing Chiari 1 malformation before the most serious symptoms arise. It also sheds light on the development of the common but poorly understood condition.

A lot of times people have recurrent headaches, but they dont realize a Chiari malformation is the cause of their headaches, said senior author Gabriel Haller, PhD, an assistant professor of neurosurgery, of neurology and of genetics. And even if they do, not everyone is willing to have brain surgery to fix it. We need better treatments, and the first step to better treatments is a better understanding of the underlying causes.

If people start experiencing severe symptoms like chronic headaches, pain, abnormal sensations or loss of sensation, or weakness, the malformation is treated with surgery to decompress the Chiari malformation.

Theres an increased risk for Chiari malformations within families, which suggests a genetic underpinning, but nobody had really identified a causal gene, Haller said. We were able to identify two causal genes, and we also discovered that people with Chiari have larger head circumference than expected. Its a significant factor, and easy to measure. If you have a child with an enlarged head, it might be worth checking with your pediatrician.

To identify genes that cause Chiari 1 malformation, Haller and colleagues sequenced all the genes of 668 people with the condition, as well as 232 of their relatives. Of these relatives, 76 also had Chiari 1 malformation and 156 were unaffected. The research team included first author Brooke Sadler, PhD, an instructor in pediatrics, and co-authors David D. Limbrick, Jr., MD, PhD, a professor of neurosurgery and director of the Division of Pediatric Neurosurgery, and Christina Gurnett, MD, PhD, a professor of neurologyand director of the Division of Pediatric and Developmental Neurology, among others.

Sequencing revealed that people with Chiari 1 malformation were significantly more likely to carry mutations in a family of genes known as chromodomain genes. Several of the mutations were de novo, meaning the mutation had occurred in the affected person during fetal development and was not present in his or her relatives. In particular, the chromodomain genes CHD3 and CHD8 included numerous variants associated with the malformation.

Further experiments in tiny, transparent zebrafish showed that the gene CHD8 is involved in regulating brain size. When the researchers inactivated one copy of the fishs chd8 gene, the animals developed unusually large brains, with no change in their overall body size.

Chromodomain genes help control access to long stretches of DNA, thereby regulating expression of whole sets of genes. Since appropriate gene expression is crucial for normal brain development, variations in chromodomain genes have been linked to neurodevelopmental conditions such as autism spectrum disorders, developmental delays, and unusually large or small heads.

Its not well known how chromodomain genes function since they have such a wide scope of activity and they are affecting so many things at once, Haller said. But they are very intriguing candidates for molecular studies, to understand how specific mutations lead to autism or developmental delay or, as in many of our Chiari patients, just to increased brain size without cognitive or intellectual symptoms. Wed like to figure out the effects of each of these mutations so that in the future, if we know a child has a specific mutation, well be able to predict whether that variant is going to have a harmful effect and what kind.

The association between chromodomain genes and head size inspired Haller and colleagues to measure the heads of children with Chiari malformations, comparing them to age-matched controls and to population averages provided by the Centers for Disease Control and Prevention. Children with Chiari tended to have larger than average heads. Those children with the largest heads bigger than 95% of children of the same age were four times more likely to be diagnosed with the malformation.

The findings suggest that children with larger heads or people with other neurodevelopmental disorders linked to chromodomain genes may benefit from screening for Chiari malformation.

A lot of kids that have autism or developmental disorders associated with chromodomain genes may have undiscovered Chiari malformations, Haller said. The only treatment right now is surgery. Discovering the condition early would allow us to watch, knowing the potential for serious symptoms is there, and perform that surgery as soon as its necessary.

Reference: Rare and de novo coding variants in chromodomain genes in Chiari I malformation by Brooke Sadler, Jackson Wilborn, Lilian Antunes, Timothy Kuensting, Andrew T. Hale, Stephen R. Gannon, Kevin McCall, Carlos Cruchaga, Matthew Harms, Norine Voisin, Alexandre Reymond, Gerarda Cappuccio, Nicola Burnetti-Pierri, Marco Tartaglia, Marcello Niceta, Chiara Leoni, Giuseppe Zampino, Allison Ashley-Koch, Aintzane Urbizu, Melanie E. Garrett, Karen Soldano, Alfons Macaya, Donald Conrad, Jennifer Strahle, Matthew B. Dobbs, Tychele N. Turner, Chevis N. Shannon, Douglas Brockmeyer, David D. Limbrick, Christina A. Gurnett and Gabe Haller, 21 December 2020, American Journal of Human Genetics.DOI: 10.1016/j.ajhg.2020.12.001

This study was funded by Sam and Betsy Reeves and the Park-Reeves Syringomyelia Research Consortium; the University of Missouri Spinal Cord Injury Research Program; the Childrens Discovery Institute of St. Louis Childrens Hospital and Washington University; the Washington University Institute of Clinical and Translational Sciences, grant number UL1TR000448 from the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH); the Eunice Kennedy Shriver National Institute of Child Health & Human Development, award number U54HD087011 to the Intellectual and Developmental Disabilities Research Center at Washington University; the Swiss National Science Foundation, grant number 31003A_182632; and the Jrme Lejeune Foundation.

View original post here:
Common Brain Malformation Affecting About 1 in 100 Children Traced to Its Genetic Roots - SciTechDaily

Posted in Gene Medicine | Comments Off on Common Brain Malformation Affecting About 1 in 100 Children Traced to Its Genetic Roots – SciTechDaily

Producing the newest medicines – and potentially cures: gene and cell therapies – WRAL.com

Posted: at 9:37 pm

By Abbey Slattery, WRAL Digital Solutions

This article was written for our sponsor, the North Carolina Biotechnology Center.

Gene and cell therapies are paving the way to breakthrough treatments and potential cures for serious illnesses and diseases, from spinal muscular atrophy to Pompe Disease.

Pioneers scientists in this field call North Carolina home.

Research by Jude Samulski, Ph.D.,at the University of North Carolina at Chapel Hill used adeno-associated virus to deliver gene therapies. His findings created Bamboo Therapeutics, now part of Pfizer, and AskBio, acquired by Bayer. Charles Gersbach, Ph.D., leads Duke University's Center for Advanced Genomic Technologies, whose CRISPR research underpins a half-dozen startups. And North Carolina State University's Rodolphe Barrangou, Ph.D., uses a different CRISPR enzyme to edit genes. This technique underpins the work of Locus Biosciences.

With this foundation, North Carolina's strengths in biological manufacturing naturally created a cluster of gene and cell therapy manufacturing, including Novartis Gene Therapies, Audentes, an Astellas company, and more.

"Gene therapy alleviates the underlying cause of genetic diseases and acquired diseases. It aims to treat diseases by replacing, inactivating or introducing genes into cells either inside the body, or in vivo, or outside of the body, or ex vivo," said Jimmy Weirich, vice president and site head at Novartis Gene Therapies, a global healthcare company with a major manufacturing facility in Durham. "Each cell and gene therapy is designed based on detailed information about the roots of a patient's disease. Rather than treating symptoms, gene therapy works by repairing or enhancing cells at the genetic level."

According to Weirich, the aim of gene therapy is to halt a disease in its tracks or reverse its progress, as opposed to simply alleviating symptoms. The treatment is often only administered once.

At Novartis Gene Therapies, the company's goal is to develop and commercialize gene therapies for patients and families affected by rare and life-threatening neurological genetic diseases. Already, its initial gene therapy for spinal muscular atrophy has been approved in the U.S., Japan, the European Union, Israel, Brazil and Canada.

That treatment, the company's flagship gene therapy in neuroscience, Zolgensma, was approved in May 2019 in the U.S. to treat children less than two years old with SMA. Given as a one-time infusion, the treatment helps halt irreversible motor neuron loss and disease progression.

In developing this treatment, Novartis Gene Therapies hopes to change the lives of those afflicted with SMA.

"The healthcare industry in general and gene therapy in particular is incredibly fast-paced and changing every day. It's exciting and requires people who want to think differently about challenges and the solutions needed to be successful," said Weirich. "At the end of the day, though, it is all about our patients. To know that our hard work means we can change the life of one single patient and his or her family is an incredible feeling. There aren't many industries or jobs like that."

At Audentes, the company has a similar focus, utilizing gene therapies to target life-threatening and often rare diseases. Based in California with a location currently under construction in Sanford, Audentes develops gene therapies to treat conditions like X-Linked myotubular myopathy, Pompe disease, Duchenne muscular dystrophy and myotonic dystrophy.

The company is currently implementing its plans to construct a $109 million, state-of-the-art gene therapy manufacturing facility that employs 200. Growing its footprint in the Triangle brings further opportunities to the area, complementing the potential of gene therapies in general.

"One of the real benefits that we have when it comes to using DNA as the therapeutic agent is that it's incredibly flexible. It serves as the basic instructions that allow you to create antibodies, or enzymatic proteins, or RNA molecules with your gene therapy. You can take this very basic building block and design it in a way that allows it to interact and change just about any aspect of cellular biology and redirect and refocus it in a way that we think is beneficial to the patient," said Mathew Pletcher, Ph.D., senior vice president of research at Audentes.

"What gene therapy does is it takes a benign virus and gets rid of the viral elements that allow the virus to replicate and make multiple copies of itself. We get rid of that and then put in the DNA we wish to deliver into cells. So we hijack something that exists in nature and now use it as the vehicle to deliver therapeutic genes back into the patient's cells."

In the case of a condition like Duchenne muscular dystrophy, Audentes is able to use gene therapy to implement interventions like exon skipping a type of RNA splicing that redirects cells to skip over mutationa. Through these techniques, scientists can restore normal gene function by removing the mutation.

Locus Biosciences develops antibacterial products using CRISPR-enhanced bacteriophages. By targeting certain bacteria, this Morrisville biotech company employs precision therapy to treat bacterial diseases, disrupting the microbiomes of patients as little as possible.

"Historically, bacteriophages haven't been effective enough to fight serious infections because bacteria and bacteriophage co-evolved over billions of years into a sort of predator-prey relationship so they're in this sort of ecological balance. We addressed that by enhancing the killing capability of the bacteriophage using CRISPR," said Joseph Nixon, senior vice president of business development at Locus. "We add CRISPR-Cas3 instead of snipping the target DNA like a pair of scissors, it shreds it or chews it up like a Pac-Man. What we do is put the CRISPR-Cas3 constructs into the bacteriophage and thereby create a dual mechanism of action between the bacteriophage itself, killing some of the target bacterial cells and then CRISPR-Cas3 killing the rest."

In targeting treatment in such a way, Locus is able to make products that are significantly more effective than other bacteriophage products. The products it develops are used to target bacterial infections and microbiome diseases, including conditions like inflammatory bowel disease and colorectal cancer.

Audentes, Novartis Gene Therapies and Locus are helping to create gene and cell therapies that could change the lives of millions of people across the world and address diseases in ways that weren't previously possible. In addition to the medicines and treatments the companies provide, other companies are using similar methods to treat conditions like congenital blindness, cancer, diabetes, metabolic disorders and more.

"Audentes really is one of the pioneers charting this new course and an innovative approach that we think could really transform the entire landscape of medicine how we deliver it and the impact that it can make," said Pletcher. "Ultimately, we're at the beginning of a really exciting transformation in medicine that is going to make a real difference in people's lives. By having a nucleus of companies like ours, growth in the area can become an avalanche, where we all continue to build on top of each other."

Added Nixon, "The Triangle has a much lower cost than other leading areas, like Boston and San Francisco. Those lower costs, especially for companies like Locus, where we're funded by investor dollars, enable us to achieve more for the same amount of money. And of course, the programs with the NCBiotech Center are critical in helping to grow and sustain the life science industry in the state."

As that avalanche of opportunity continues to gain momentum, companies like these need a qualified workforce. According to Weirich, the ideal candidate for the industry should have the proper training and education, but also curiosity and a passion for helping others.

"There is a wide range of jobs, and, more importantly, career options, available within this industry. No matter the role of the job, it is fundamental for all of our employees to know that the work they do on a daily basis has a direct impact on our ability to produce life-saving therapies for our patients, and in the case of Zolgensma, our employees are literally saving the lives of newborn babies," said Weirich. "Most importantly, we are looking for people who feel as passionate as we do about the mission to make a difference in the lives of individuals and families faced with the challenge of rare diseases."

Photo Courtesy of Novartis

This article was written for our sponsor, the North Carolina Biotechnology Center.

Read more here:
Producing the newest medicines - and potentially cures: gene and cell therapies - WRAL.com

Posted in Gene Medicine | Comments Off on Producing the newest medicines – and potentially cures: gene and cell therapies – WRAL.com

Global Cell Therapy Market Report 2020: Market to Recover in 2023 – PRNewswire

Posted: at 9:37 pm

DUBLIN, Dec. 31, 2020 /PRNewswire/ -- The "Cell Therapy Global Market Report 2020-30: COVID-19 Growth and Change" report has been added to ResearchAndMarkets.com's offering.

Cell Therapy Global Market Report 2020-30: COVID 19 Growth and Change provides the strategists, marketers and senior management with the critical information they need to assess the global cell therapy market.

Major players in the cell therapy market are Fibrocell Science Inc., JCR Pharmaceuticals Co. Ltd., PHARMICELL Co. Ltd., Osiris Therapeutics Inc., MEDIPOST, Vericel Corporation, Anterogen Co. Ltd., Kolon TissueGene Inc., Stemedica Cell Technologies Inc. and AlloCure.

The global cell therapy market is expected to decline from $7.31 billion in 2019 to $7.2 billion in 2020 at a compound annual growth rate (CAGR) of -1.54%. The decline is mainly due to the COVID-19 outbreak that has led to restrictive containment measures involving social distancing, remote working, and the closure of industries and other commercial activities resulting in operational challenges. The entire supply chain has been disrupted, impacting the market negatively. The market is then expected to recover and reach $10.0 billion in 2023 at a CAGR of 11.55%.

The cell therapy market consists of sales of cell therapy and related services. Cell therapy (CT) helps repair or replace damaged tissues and cells. A variety of cells are used for the treatment of diseases includes skeletal muscle stem cells, hematopoietic (blood-forming) stem cells (HSC), lymphocytes, mesenchymal stem cells, pancreatic islet cells, and dendritic cells.

North America was the largest region in the cell therapy market in 2019. Asia Pacific is expected to be the fastest-growing region in the forecast period.

The cell therapy market covered in this report is segmented by technique into stem cell therapy; cell vaccine; adoptive cell transfer (ACT); fibroblast cell therapy; chondrocyte cell therapy. It is also segmented by therapy type into allogeneic therapies; autologous therapies, by application into oncology; cardiovascular disease (CVD); orthopedic; wound healing; others.

In August 2019, Bayer AG, a Germany-based pharmaceutical and life sciences company, acquired BlueRock Therapeutics, an engineered cell therapy company, for $1 billion. Through this transaction, Bayer AG will acquire complete BlueRock Therapeutics' CELL+GENE platform, including a broad intellectual property portfolio and associated technology platform including proprietary iPSC technology, gene engineering, and cell differentiation capabilities. BlueRock Therapeutics is a US-based biotechnology company focused on developing engineered cell therapies in the fields of neurology, cardiology, and immunology, using a proprietary induced pluripotent stem cell (iPSC) platform.

The high cost of cell therapy hindered the growth of the cell therapy market. Cell therapies have become a common choice of treatment in recent years as people are looking for the newest treatment options. Although there is a huge increase in demand for cell therapies, they are still very costly to try. Basic joint injections can cost about $1,000 and, based on the condition, more specialized procedures can cost up to $ 100,000. In 2020, the average cost of stem cell therapy can range from $4000 - $8,000 in the USA. Therefore, the high cost of cell therapy restraints the growth of the cell therapy market.

Key players in the market are strategically partnering and collaborating to expand the product portfolio and geographical presence of the company. For instance, in April 2018, Eli Lilly, an American pharmaceutical company entered into a collaboration agreement with Sigilon Therapeutics, a biopharmaceutical company that focused on the discovery and development of living therapeutics to develop cell therapies for type 1 diabetes treatment by using the Afibromer technology platform. Similarly, in September 2018, CRISPR Therapeutics, a biotechnological company that develops transformative medicine using a gene-editing platform for serious diseases, and ViaCyte, a California-based regenerative medicine company, collaborated on the discovery, development, and commercialization of allogeneic stem cell therapy for diabetes treatment.

The rising prevalence of chronic diseases contributed to the growth of the cell therapy market. According to the US Centers for Disease Control and Prevention (CDC), chronic disease is a condition that lasts for one year or more and requires medical attention or limits daily activities or both and includes heart disease, cancer, diabetes, and Parkinson's disease. Stem cells can benefit the patients suffering from spinal cord injuries, type 1 diabetes, Parkinson's disease (PD), heart disease, cancer, and osteoarthritis.

According to Cancer Research UK, in 2018, 17 million cancer cases were added to the existing list, and according to the International Diabetes Federation, in 2019, 463 million were living with diabetes. According to the Parkinson's Foundation, every year, 60,000 Americans are diagnosed with PD, and more than 10 million people are living with PD worldwide. The growing prevalence of chronic diseases increased the demand for cell therapies and contributed to the growth of the market.

Key Topics Covered:

1. Executive Summary

2. Cell Therapy Market Characteristics

3. Cell Therapy Market Size And Growth 3.1. Global Cell Therapy Historic Market, 2015 - 2019, $ Billion 3.1.1. Drivers Of The Market 3.1.2. Restraints On The Market 3.2. Global Cell Therapy Forecast Market, 2019 - 2023F, 2025F, 2030F, $ Billion 3.2.1. Drivers Of The Market 3.2.2. Restraints On the Market

4. Cell Therapy Market Segmentation 4.1. Global Cell Therapy Market, Segmentation By Technique, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

4.2. Global Cell Therapy Market, Segmentation By Therapy Type, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

4.3. Global Cell Therapy Market, Segmentation By Application, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

5. Cell Therapy Market Regional And Country Analysis 5.1. Global Cell Therapy Market, Split By Region, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion 5.2. Global Cell Therapy Market, Split By Country, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/rblnmb

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Read more from the original source:
Global Cell Therapy Market Report 2020: Market to Recover in 2023 - PRNewswire

Posted in Gene Medicine | Comments Off on Global Cell Therapy Market Report 2020: Market to Recover in 2023 – PRNewswire

Vertex Announces New Drug Submission for Investigational Triple Combination Medicine for the Treatment of Cystic Fibrosis Has Been Accepted for…

Posted: at 9:37 pm

Dec. 28, 2020 13:04 UTC

BOSTON--(BUSINESS WIRE)-- Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced its New Drug Submission for TRIKAFTA, Vertexs investigational triple combination medicine, has been accepted for Priority Review by Health Canada for the treatment of cystic fibrosis (CF) in people ages 12 years and older.

We are pleased this submission has been accepted for Priority Review by Health Canada, and we anticipate this accelerated review process will enable access for patients as early as possible, said Carmen Bozic, M.D., Executive Vice President, Global Medicines Development and Medical Affairs, and Chief Medical Officer at Vertex.

With Priority Review, the conventional review timeline of 300 days is reduced to 180 days. The expected approval target by Health Canada is in the first half of 2021.

About Cystic Fibrosis

Cystic fibrosis (CF) is a rare, life-shortening genetic disease affecting approximately 75,000 people worldwide. CF is a progressive, multi-system disease that affects the lungs, liver, GI tract, sinuses, sweat glands, pancreas and reproductive tract. CF is caused by a defective and/or missing CFTR protein resulting from certain mutations in the CFTR gene. Children must inherit two defective CFTR genes one from each parent to have CF. While there are many different types of CFTR mutations that can cause the disease, the vast majority of all people with CF have at least one F508del mutation. These mutations, which can be determined by a genetic test, or genotyping test, lead to CF by creating non-working and/or too few CFTR proteins at the cell surface. The defective function and/or absence of CFTR protein results in poor flow of salt and water into and out of the cells in a number of organs. In the lungs, this leads to the buildup of abnormally thick, sticky mucus that can cause chronic lung infections and progressive lung damage in many patients that eventually leads to death. The median age of death is in the early 30s.

About Vertex

Vertex is a global biotechnology company that invests in scientific innovation to create medicines for people with serious diseases. The company has multiple approved medicines that treat cystic fibrosis (CF) a rare, life- threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 11 consecutive years on Science magazine's Top Employers list and a best place to work for LGBTQ equality by the Human Rights Campaign. For company updates and to learn more about Vertexs history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Special Note Regarding Forward-Looking Statements

This press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Carmen Bozic in this press release, including expectations for patient access to our medicine, and statements regarding the anticipated timing of the expected approval target by Health Canada. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that the New Drug Submission to Health Canada may not be approved in the expected timeline, or at all, that data from the company's development programs may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under the heading Risk Factors in Vertex's most recent annual report and subsequent quarterly reports filed with the Securities and Exchange Commission at http://www.sec.gov and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

View source version on businesswire.com: https://www.businesswire.com/news/home/20201228005171/en/

Go here to see the original:
Vertex Announces New Drug Submission for Investigational Triple Combination Medicine for the Treatment of Cystic Fibrosis Has Been Accepted for...

Posted in Gene Medicine | Comments Off on Vertex Announces New Drug Submission for Investigational Triple Combination Medicine for the Treatment of Cystic Fibrosis Has Been Accepted for…

LYNPARZA (olaparib) Receives Three New Approvals in Japan – Business Wire

Posted: at 9:37 pm

KENILWORTH, N.J.--(BUSINESS WIRE)--AstraZeneca and Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that LYNPARZA has been approved in Japan for the treatment of three types of advanced cancer: ovarian, prostate and pancreatic cancer. The three approvals authorize LYNPARZA for use as maintenance treatment after first-line chemotherapy containing bevacizumab (genetical recombination) in patients with homologous recombination repair deficient (HRD) ovarian cancer; the treatment of patients with BRCA gene-mutated (BRCAm) castration-resistant prostate cancer with distant metastasis (mCRPC); and maintenance treatment after platinum-based chemotherapy for patients with BRCAm curatively unresectable pancreas cancer.

The concurrent approvals by the Japanese Ministry of Health, Labor, and Welfare are based on results from the PAOLA-1, PROfound and POLO Phase 3 trials, which each were published in The New England Journal of Medicine.

Dave Fredrickson, executive vice president, oncology business unit, AstraZeneca, said, These three approvals allow patients in Japan to be treated with LYNPARZA, a targeted treatment personalized to their specific biomarkers. They further underline the critical importance of biomarker testing at diagnosis, which helps physicians determine a course of treatment tailored to their individual patients to substantially delay disease progression.

Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories, said, For patients in Japan diagnosed with each of these types of cancer, there are very few treatment options. Approvals for treatments such as LYNPARZA, the first PARP inhibitor to be approved in these specific types of metastatic castration-resistant prostate cancer and metastatic pancreatic cancer in Japan, enable us to advance this evolving era of personalized medicine and change how these cancers are treated.

LYNPARZA Approved as Maintenance Treatment After First-Line Chemotherapy Containing Bevacizumab (Genetical Recombination) in Patients with HRD-Positive Ovarian Cancer

The approval is based on a biomarker subgroup analysis of the PAOLA-1 Phase 3 trial which showed LYNPARZA, in combination with bevacizumab maintenance treatment, demonstrated a substantial progression-free survival (PFS) improvement versus bevacizumab alone for patients with HRD-positive advanced ovarian cancer.

In 2020, nearly 11,000 women in Japan were diagnosed with ovarian cancer, with more than 5,000 women dying of the disease.

LYNPARZA Approved for the Treatment of BRCAm Castration-Resistant Prostate Cancer with Distant Metastasis

The approval is based on a subgroup analysis of the PROfound Phase 3 trial which showed LYNPARZA demonstrated a substantial improvement in radiographic progression-free survival (rPFS) and overall survival (OS) versus enzalutamide or abiraterone in men with BRCA1/2 mutations. LYNPARZA is the first and only PARP inhibitor approved in Japan in mCRPC.

Prostate cancer is the third most common type of cancer in Japan and in 2020, accounted for over 100,000 new cases.

LYNPARZA Approved as Maintenance Treatment After Platinum-Based Chemotherapy for Patients with BRCAm Curatively Unresectable Pancreas Cancer

The approval is based on the results of the POLO Phase 3 trial which showed LYNPARZA demonstrated a statistically significant and clinically meaningful improvement in PFS versus placebo in patients with gBRCAm metastatic pancreatic cancer. LYNPARZA is the first and only PARP inhibitor approved in Japan in this disease.

Pancreatic cancer has one of the lowest survival rates of the most common cancers and in Japan was responsible for almost 40,000 deaths in 2020 the fourth most common cause of cancer death. Japan has the third-highest rate of pancreatic cancer in the world with 44,000 new cases diagnosed in 2020.

AstraZeneca and Merck are exploring additional trials in advanced prostate cancers including the ongoing PROpel Phase 3 trial testing LYNPARZA as a first-line treatment for patients with mCRPC in combination with abiraterone versus abiraterone alone. Data are anticipated in the second half of 2021. Outside the collaboration, Merck is exploring additional trials in advanced ovarian cancer including the Phase 3 KEYLYNK-001 trial evaluating KEYTRUDA in combination with chemotherapy, followed by maintenance LYNPARZA, for the first-line treatment of women with BRCA non-mutated advanced ovarian cancer.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

ADVERSE REACTIONSFirst-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in 10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONSFirst-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

Most common adverse reactions (Grades 1-4) in 10% of patients treated with LYNPARZA/bevacizumab compared to a 5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%), and headache (14%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%), and decrease in platelets (35%).

ADVERSE REACTIONSMaintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in 20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONSAdvanced gBRCAm Ovarian Cancer

Most common adverse reactions (Grades 1-4) in 20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONSgBRCAm, HER2-negative Metastatic Breast Cancer

Most common adverse reactions (Grades 1-4) in 20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

ADVERSE REACTIONSFirst-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

Most common adverse reactions (Grades 1-4) in 10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONSHRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

Most common adverse reactions (Grades 1-4) in 10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

Most common laboratory abnormalities (Grades 1-4) in 25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr 30 mL/min).

INDICATIONS in the US

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance HRD Positive Advanced Ovarian Cancer in Combination with Bevacizumab

In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm Ovarian Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm HER2-negative Metastatic Breast Cancer

For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer, who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

About PAOLA-1

PAOLA-1 is a double-blind Phase 3 trial testing the efficacy and safety of LYNPARZAadded to standard-of-care bevacizumab versus bevacizumab alone, as a first-line maintenance treatment for newly diagnosed advanced (FIGO stages III and IV) high-grade serous or endometroid ovarian, fallopian tube or peritoneal cancer patients who had a complete or partial response to first-line treatment with platinum-based chemotherapy and bevacizumab.

The PAOLA-1 Phase 3 trial showed that LYNPARZA, in combination with bevacizumab maintenance treatment, reduced the risk of disease progression or death by 67% (HR 0.33 [95% CI, 0.25-0.45]) in patients with HRD-positive advanced ovarian cancer. The addition of LYNPARZA improved PFS to a median of 37.2 months vs. 17.7 months with bevacizumab alone.

The most common adverse reactions (ARs) 10% in the overall trial population for PAOLA-1 when treated with LYNPARZA in combination with bevacizumab (N=535) and at a 5% frequency compared to bevacizumab alone (N=267) were fatigue (53% vs. 32%), nausea (53% vs. 22%), anemia (41% vs. 10%), lymphopenia (24% vs. 9%), vomiting (22% vs. 11%) and leukopenia (18% vs. 10%). Grade 3 or above ARs were anemia (17% vs. <1%), lymphopenia (7% vs. 1%), fatigue (5% vs. 2%), nausea (2% vs. 1%), leukopenia (2% vs. 2%) and vomiting (2% vs. 2%). Additional ARs that occurred in 10% of patients receiving LYNPARZA in combination with bevacizumab irrespective of the frequency compared to bevacizumab alone were diarrhea (18%), neutropenia (18%), urinary tract infection (15%) and headache (14%). Fatal ARs occurred in one patient due to concurrent pneumonia and aplastic anemia. Serious ARs occurred in 31% of patients who received LYNPARZA in combination with bevacizumab. Serious ARs in >5% of patients included hypertension (19%) and anemia (17%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA in combination with bevacizumab (5%) than in those receiving bevacizumab alone (1.9%). ARs led to dose interruption in 54% of patients on LYNPARZA in combination with bevacizumab, while 41% of patients on LYNPARZA in combination with bevacizumab had a dose reduction. Discontinuation of treatment due to ARs occurred in 20% of patients on LYNPARZA in combination with bevacizumab.

About PROfound

PROfound is a prospective, multi-center, randomized, open-label Phase 3 trial testing the efficacy and safety of LYNPARZA versus enzalutamide or abiraterone in patients with mCRPC who have progressed on prior treatment with a new hormonal anticancer treatment and have a qualifying tumor mutation in BRCA1/2, ATM or one of 12 other genes involved in the HRR pathway.

The trial was designed to analyze patients with HRR-mutated genes in two cohorts: the primary endpoint was in those with mutations in BRCA1/2 or ATM genes and then, if LYNPARZA showed clinical benefit, a formal analysis was performed of the overall trial population of patients with HRR-mutated genes.

The subgroup analysis from the PROfound Phase 3 trial showed LYNPARZA reduced the risk of disease progression or death by 78% (HR 0.22 [95% CI, 0.15-0.32], nominal p<0.0001) and improved rPFS to a median of 9.8 months vs. 3.0 months with enzalutamide or abiraterone in men with mCRPC with BRCA1/2 mutations. LYNPARZA reduced the risk of death by 37% (HR 0.63 [95% CI 0.42-0.95]) with median OS of 20.1 months vs. 14.4 months with enzalutamide or abiraterone. The OS results from the PROfound Phase 3 trial were published in The New England Journal of Medicine earlier this year.

The most common ARs in the PROfound trial, occurring in 10% of subjects, for LYNPARZA compared to enzalutamide or abiraterone were anemia (46% vs.15%), nausea (41% vs. 19%), fatigue (including asthenia) (41% vs. 32%), decreased appetite (30% vs. 18%), diarrhea (21% vs. 7%), vomiting (18% vs. 12%), thrombocytopenia (12% vs. 3%), cough (11% vs. 2%) and dyspnea (10% vs. 3%). Dose interruptions due to an AR occurred in 45% of patients receiving LYNPARZA and dose reductions due to an AR occurred in 22% of LYNPARZA patients. Discontinuation due to ARs occurred in 18% of LYNPARZA patients.

About POLO

POLO is a randomized, double-blinded, placebo-controlled, multi-center trial of LYNPARZA tablets (300 mg twice daily) as maintenance monotherapy versus placebo. The trial randomized 154 patients with gBRCAm metastatic pancreatic cancer whose disease had not progressed on first-line platinum-based chemotherapy. Patients were randomized (3:2) to receive LYNPARZA or placebo until disease progression. The primary endpoint was PFS and key secondary endpoints included OS, time to second disease progression, overall response rate and health-related quality of life.

Data from the Phase 3 POLO trial showed LYNPARZA nearly doubled the time patients with gBRCAm metastatic pancreatic cancer lived without disease progression or death to a median of 7.4 months vs. 3.8 months on placebo and reduced the risk of disease progression or death by 47% (HR 0.53 [95% CI, 0.35-0.82], p=0.0035).

The most common ARs 10% were fatigue/asthenia (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%). The most common grade 3 ARs were anemia (11%), fatigue/asthenia (5%), decreased appetite (3%), abdominal pain (2%), vomiting (1%) and arthralgia (1%). Among patients taking LYNPARZA, dose interruptions due to an AR of any grade occurred in 35% and dose reductions due to an AR occurred in 17%. Discontinuation due to ARs occurred in 6% of patients receiving LYNPARZA.

About LYNPARZA (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

About BRCA Mutations

BRCA1 and BRCA2 (breast cancer susceptibility genes 1/2) are human genes that produce proteins responsible for repairing damaged DNA and play an important role in maintaining the genetic stability of cells. When either of these genes is mutated, or altered, such that its protein product either is not made or does not function correctly, DNA damage may not be repaired properly, and cells become unstable. As a result, cells are more likely to develop additional genetic alterations that can lead to cancer.

About Homologous Recombination Deficiency

HRD encompasses a wide range of genetic abnormalities, including BRCA mutations, that can be detected using tests. As the BRCA gene drives DNA repair via homologous recombination, mutation of this gene leads to homologous recombination deficiency thereby interfering with normal cell DNA repair mechanisms. BRCA mutations are just one of many HRDs which confer sensitivity to PARP inhibitors including LYNPARZA.

About the AstraZeneca and Merck Strategic Oncology Collaboration

Read more:
LYNPARZA (olaparib) Receives Three New Approvals in Japan - Business Wire

Posted in Gene Medicine | Comments Off on LYNPARZA (olaparib) Receives Three New Approvals in Japan – Business Wire

COVID-19 roundup: Higher viral load in UK variant, early antibodies key to recovery | Daily Sabah – Daily Sabah

Posted: at 9:37 pm

This week's roundup of some of the latest scientific studies on the coronavirus and efforts to find treatments and vaccines for COVID-19 reveals that a new variant circulating in the U.K. and Europe could spell trouble if its viral load is as high as in collected samples, while stressing that the early production of antibodies may offer a better chance at recovery rather than the amount produced.

U.K. coronavirus variant associated with higher viral loads

The highly infectious COVID-19 coronavirus variant that has been circulating in Britain is linked to higher loads of the virus in swab samples obtained from the nose and the back of the throat, according to a research report published on medRxiv ahead of peer review.

Around 35% of patients infected by the variant form had very high levels of the virus in their samples, compared to 10% of patients without the variant, study leader Michael Kidd of Public Health England and Birmingham University told Reuters. Higher viral loads have been linked with worse COVID-19 outcomes. The tests were conducted at the Birmingham Turnkey Lab.

Kidd said an additional study was needed to confirm or refute the findings. If confirmed, he hopes scientists will investigate how this particular variant manages to make more copies of itself in infected patients.

Early antibody production key to COVID-19 recovery

The speed of patients' antibody production rather than the volume of antibodies they produce to fight the new coronavirus determines whether they will survive COVID-19, new data suggests.

Researchers who studied more than 200 COVID-19 patients, including 179 who were hospitalized, found those who produced so-called neutralizing antibodies within 14 days of developing symptoms eventually recovered, while those who did not produce neutralizing antibodies until more than 14 days had elapsed developed higher viral loads and more severe disease.

"It is unclear why antibodies generated after this time point are unable to promote viral clearance and recovery in COVID-19 patients," the researchers said in a report posted on medRxiv ahead of peer review. Study leader Akiko Iwasaki of the Yale University School of Medicine tweeted on Saturday, "It's possible that virus somehow becomes resistant by hiding in inaccessible tissues."

The new findings, she added, suggest therapy with so-called monoclonal antibody drugs such as those from Regeneron given to U.S. President Donald Trump is likely to work only if used soon after infection.

Masked faces not a complete mystery to children

Young children can sometimes read the emotions of adults who are wearing face masks, according to a new study.

Researchers asked 81 children, aged 7 to 13, to assign one of six emotions to photographs of faces that were either unobstructed, covered by a surgical mask, or wearing sunglasses. The children correctly identified the emotions in 66% of the uncovered faces. When faces were masked, they correctly identified sadness 28% of the time and anger 27% of the time, the researchers reported in PLoS One. Sunglasses made some emotions harder to identify.

"Emotions aren't conveyed solely through your face," coauthor Ashley Ruba of the University of Wisconsin-Madison said in a statement. "Vocal inflections, the way that someone positions their body, and what's going on around them, all that other information helps us make better predictions about what someone is feeling."

Neanderthal gene protects against COVID-19

A specific form of a protein passed down from Neanderthals protects against severe COVID-19, and medications that boost levels of this protein could potentially help treat the disease, according to a study reported on medRxiv ahead of peer review.

The protein, called OAS1, is involved in the body's response to viruses. People with higher levels of the Neanderthal-related form of OAS1 are less susceptible to COVID-19, and if they do become infected, they are at lower risk for hospitalization, intubation and death, the researchers found.

"This protective form of OAS1 is present in sub-Saharan Africans but was lost when the ancestors of modern-day Europeans migrated out of Africa. It was then reintroduced into the European population through mating with Neanderthals" who lived more than 40,000 years ago, said co-author Brent Richards from the Jewish General Hospital and McGill University in Montreal.

An earlier study linked a cluster of genes inherited from Neanderthals to higher risks of hospitalization from COVID-19. "These findings further implicate Neanderthal ancestry in COVID-19 severity," Richards said.

See the original post here:
COVID-19 roundup: Higher viral load in UK variant, early antibodies key to recovery | Daily Sabah - Daily Sabah

Posted in Gene Medicine | Comments Off on COVID-19 roundup: Higher viral load in UK variant, early antibodies key to recovery | Daily Sabah – Daily Sabah

Modernizing Genetic Engineering and BOR Provisions Passed – AG INFORMATION NETWORK OF THE WEST – AGInfo Ag Information Network Of The West

Posted: January 1, 2021 at 9:55 am

From the Ag Information Network, Im Bob Larson with your Agribusiness Update.

**Ag Secretary Sonny Perdue announced a significant step in modernizing regulations of agricultural animals modified or produced by genetic engineering.

agwired.com reports, the USDA will move forward with an Advanced Notice of Proposed Rulemaking to solicit public input on a regulatory framework that would update our system into a scientifically-sound, risk-based, and predictable process that facilitates the development and use of these technologies for farmers and ranchers.

http://agwired.com/

**The end-of-year spending package passed by both Chambers of Congress last week included ground-breaking provisions

U.S. Representative Dan Newhouse, a Washington state Republican, introduced to maintain and update critical Bureau of Reclamation water supply infrastructure projects across the rural West.

The provisions establish a first-of-its-kind Aging

Infrastructure Account to provide stability and flexibility for local water managers who maintain and operate BOR water infrastructure.

**A near-double digit gain in potato retail sales wasnt enough to offset a decline in foodservice sales during the 2019-20 marketing year.

Showing a 5% decline in the use of ALL potatoes, the domestic sales and U.S. potato report for July 2019 to June 2020 was released by Potatoes USA in December.

The report, according to thepacker.com, says despite the 9% increase in retail sales, the decline occurred due to the 13% decrease in foodservice sales and 2% decrease in exports.

https://www.thepacker.com/news/produce-crops/potato-utilization-dips-5-2019-20-marketing-year?mkt/

The rest is here:
Modernizing Genetic Engineering and BOR Provisions Passed - AG INFORMATION NETWORK OF THE WEST - AGInfo Ag Information Network Of The West

Posted in Genetic Engineering | Comments Off on Modernizing Genetic Engineering and BOR Provisions Passed – AG INFORMATION NETWORK OF THE WEST – AGInfo Ag Information Network Of The West

Long Live the Bio-Revolution by Michael Chui & Matthias Evers – Project Syndicate

Posted: at 9:55 am

The COVID-19 pandemic has increased threats to food security around the world, underscoring the need for innovation to make agriculture and aquaculture more resilient and efficient. Fortunately, the biological innovations needed to do just that are quickly becoming competitive and scalable.

SAN FRANCISCO In November, the United Nations World Food Program and the International Organization for Migration warned of the unprecedented threat to food security brought about by COVID-19. The pandemics collateral damage could turn out to be even worse than the disease itself.

Most leading international institutions with an interest in food security have now called for action to prevent future outbreaks of infectious disease, and to make food systems more resistant to shocks. Biological innovation must factor into our thinking as we strive to meet the dual challenge of feeding a growing population and managing natural resources sustainably.

Even before the pandemic, the Food and Agriculture Organization of the UN (FAO) warned that more than 820 million people did not have enough to eat. With the global population expected to grow by roughly two billion people by 2050, improving access to affordable and healthy food will be critical in reducing malnutrition and the associated health-care costs.

Innovation in farming and food production is as old as agriculture itself, yet it is sorely needed today. Recent research by the McKinsey Global Institute finds that biological innovation in agriculture, aquaculture, and food production could yield economic returns of up to $1.2 trillion over the next decade or two. To put that into context, the global food and agribusiness industry is worth about $5 trillion today.

What could deliver this growth? The most promising innovations include alternative proteins, marker-assisted breeding, genetic engineering of plant and animal traits, and microbiome mapping and modification. Consumer interest in alternative protein sources is increasing globally, owing to concerns about health, the environment, and animal welfare.

Plant-based meat substitutes are already widely sold, though the economics of their production needs to be improved. Plant-based milk, for example, accounts for 15% of retail milk sales in the United States and 8% in Britain. And companies like Clara Foods are using advanced yeast engineering and fermentation technologies to produce animal-free egg-white proteins.

Enjoy unlimited access to the ideas and opinions of the world's leading thinkers, including weekly long reads, book reviews, and interviews; The Year Ahead annual print magazine; the complete PS archive; and more All for less than $9 a month.

Subscribe Now

Likewise, cultured meat and seafood whereby muscle tissue grown from cells in the lab is made to mimic the protein profile of animal meat is on the horizon. Earlier this month, Singapore became the first government to approve the sale of lab-grown meat (cultured chicken created by the San Francisco-based company Eat Just). Over the next ten years, cultured meat and seafood could become cost competitive with conventional animal proteins.

Selective breeding of plants and animals is not new, but marker-assisted breeding has made the process cheaper and significantly faster, because it enables the selection of desirable traits even if the precise genes that generate them have not yet been identified or understood. The plunging cost of DNA sequencing means that thousands of potential markers can be detected simultaneously. Whereas developing new crop varieties previously could require 25 years, it now can be done in as few as seven. And because marker-assisted selection is not yet as prevalent in developing countries as it is in advanced economies, there are significant opportunities for growth.

Since the development of the first genetically engineered plant (tobacco) in the early 1980s, genetic engineering has become well established. But, again, the technology is still improving rapidly. New tools like CRISPR have made gene editing more precise, allowing for crops to be tailored much more effectively to local conditions such as temperature and soil type. CRISPR-edited produce could land on grocery store shelves in the US over the next ten years, starting with sweeter strawberries that have a longer shelf life.

Another promising area of innovation is portable DNA-sequencing devices, which could soon be used by farmers to diagnose plant diseases, possibly improving quality and yield while eliminating or reducing use of pesticides. Genetic editing to improve health and productivity in food animals such as dairy and beef cattle, swine, and poultry is still nascent, but interest in the field has soared since the 2019 outbreak of African swine fever.

Similarly, the mapping of the microbiome including bacteria, fungi, and viruses is helping researchers find ways to increase the resilience of crops, animals, and soil to drought and disease. Here, too, advances in computing and sequencing are accelerating the pace of discovery, such that the biotech company Novozymes is already offering genetically engineered microbes to use in place of yield- and quality-boosting chemicals.

Many of these biological innovations can help us address not only hunger but also resource depletion and broader climate risks. According to the FAO, raising livestock for meat, eggs, and milk generates14.5% of global greenhouse-gas emissions; and one-third of all cropland is used to produce animal feed. Agriculture is also the largest contributor to deforestation, occupying 43% of the worlds ice-free and desert-free land. The plant-based Impossible Burger embodies 89% fewer emissions than a traditional beef burger.

Climate change reinforces the need for biological innovations, such as crops that have been engineered to withstand severe weather, or to grow in new environments, including areas with extreme temperatures, high salinity, or frequent droughts.

Many innovations are already contributing to food security, and the full potential of affordable DNA sequencing and CRISPR technology will continue to be revealed over time. It will take longer for lab-grown meat to make inroads, but when it does, the impact is likely to be felt far and wide.

Regulation and public perceptions have long played a role both positive and negative in biological innovation. The first wave of commercially available genetically engineered products has not yet reached many countries, and 19 EU member states still support partial or full bans on their sale. In Africa, genetically modified food products are legal in only a tiny handful of countries.

Safety is clearly paramount. But if regulators and consumers concerns can be addressed, the bio-revolution could take us a long way toward tackling global challenges like food security and climate change.

Follow this link:
Long Live the Bio-Revolution by Michael Chui & Matthias Evers - Project Syndicate

Posted in Genetic Engineering | Comments Off on Long Live the Bio-Revolution by Michael Chui & Matthias Evers – Project Syndicate

Gene Mutation Discovered that Could Help Create Alzheimer’s Therapeutics – Interesting Engineering

Posted: at 9:55 am

Alzheimer's disease is the fourth largest killer of people worldwide, yet it doesn't have any approved medications that can treat or slow the progression of the disease.

It's estimated that 36 million people worldwide suffer from Alzheimer's or related dementias and this commonality along with lack of cure is why so much funding goes into Alzheimer's research.

One new study might be making headway's in helping to develop new therapies to treat the disease. A team of researchers have found mutations in the gene CSF-1R, which has been linked to a rare form of dementia. Called Leukoencephalopathy, the novel finding might help researchers understand enough about the disease to develop thereapeutics for Alzheimer's.

The research was published in ERMBO Molecular Medicine.

Genetic Engineering and Biotechnology News reports that Colin Doherty, one of the researchers that participated in the study, said, "It is absolutely critical that we focus our research endeavors on identifying the underlying cause of neurodegenerative conditions. Studies like these will pave the way for better clinical management of our patients and hopefully new medicines to treat the condition.

One of the biggest co-effects of Alzheimers is the finding of variations in blood vessels in the brain. This finding is incredibly common, found in about 80 percent of patients with the disease, but the causes of this are largely not known.

The researchers noted that by focusing in on a very rare form of brain disease, they've been able to narrow down the specific gene mutation that causes the condition. Since the rare disease draws significant parallels in effects on patients to Alzheimer's, the team is hoping that the found gene mutation might draw parallels to Alzheimer's.

By finding the mutation, the team was able to tie to the loss in function of damaged blood vessels in the brain caused by the mutation to the development of dementia in patients.

The study was able to demonstrate the the mutation in CSF-1R caused a loss of signaling that disrupted the blood-brain barrier, inhibits the ability of macrophages, or cells involved in fighting bacteria, from avoiding certain plaques effectively.

RELATED: NEW RESEARCH LINKS CHRONIC GUM DISEASE WITH ALZHEIMER'S

The data from this research is directly informing the researchers other preclinical studies in Alzheimer's research. The findings also helped them learn more about a neurodegeneration mechanism that may lead to further discoveries in more common dementia patients.

You can read the rest of the study inERMBO Molecular Medicine.

View original post here:
Gene Mutation Discovered that Could Help Create Alzheimer's Therapeutics - Interesting Engineering

Posted in Genetic Engineering | Comments Off on Gene Mutation Discovered that Could Help Create Alzheimer’s Therapeutics – Interesting Engineering

Page 1,140«..1020..1,1391,1401,1411,142..1,1501,160..»