Page 189«..1020..188189190191..200210..»

Category Archives: Genetic Engineering

Human genetic engineering – Wikipedia, the free encyclopedia

Posted: December 20, 2013 at 4:46 pm

Human genetic engineering is the alteration of an individual's genotype with the aim of choosing the phenotype of a newborn or changing the existing phenotype of a child or adult.[1]

It holds the promise of curing genetic diseases like cystic fibrosis. Gene therapy has been successfully used to treat multiple diseases, including X-linked SCID,[2]chronic lymphocytic leukemia (CLL),[3] and Parkinson's disease.[4] In 2012, Glybera became the first gene therapy treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[5][6]

It is speculated that genetic engineering could be used to change physical appearance, metabolism, and even improve physical capabilities and mental faculties like memory and intelligence, although for now these uses are limited to science fiction.

Gene therapy trials on humans began in 2004 on patients with severe combined immunodeficiency (SCID). In 2000, the first gene therapy "success" resulted in SCID patients with a functional immune system. These trials were stopped when it was discovered that two of ten patients in one trial had developed leukemia resulting from the insertion of the gene-carrying retrovirus near an oncogene. In 2007, four of the ten patients had developed leukemia.[7] Work is now focusing on correcting the gene without triggering an oncogene. Since 1999, gene therapy has restored the immune systems of at least 17 children with two forms (ADA-SCID and X-SCID) of the disorder.[citation needed]

Human genetic engineering is already being used on a small scale to allow infertile women with genetic defects in their mitochondria to have children.[8] The technique, known as ooplasmic transfer, is used to inject the mitochondria from the donor's egg cell into the egg of the infertile woman. In vitro fertilization is performed on the egg.[9] Healthy human eggs from a second mother are used. The first mother thus contributes the 23 chromosomes of the nuclear genome, which contain the majority of the child's genetic information, while the second mother contributes the mitochondrial genome, which contains 37 genes. The child produced this way has genetic information from two mothers and one father.[8] The changes made are germline changes and will likely be passed down from generation to generation, and, thus, are a permanent change to the human genome.[8]

Other forms of human genetic engineering are still theoretical. Recombinant DNA research is usually performed to study gene expression and various human diseases. This includes the creation of transgenic animals, such as mice.

Genetic engineering can be broken down into two applications, somatic and germline. Both processes involve changing the genes in a cell through the use of a vector carrying the gene of interest. The new gene may be integrated into the cells genetic material through recombination, or may remain separate from the genome, such as in the form of a plasmid. If integrated into the genome, it may recombine at a random location or at a specific location (site-specific recombination) depending on the technology used.

As the name suggests, somatic cell therapy alters the genome of somatic cells. This process targets specific organs and tissues in a person. The aim of this technique is to correct a mutation or provide a new function in human cells. If successful, somatic cell therapy has the potential to treat genetic disorders with few therapeutic options. This process does not affect the genetics of gametic cells within the same body. Any genetic modifications are restricted to a patient individually and cannot be passed on to their offspring.

Several somatic cell gene transfer experiments are currently in clinical trials with varied success. Over 600 clinical trials utilizing somatic cell therapy are underway in the United States. Most of these trials focus on treating severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia, and cystic fibrosis. These disorders are good candidates for somatic cell therapy because they are caused by single gene defects. While somatic cell therapy is promising for treatment, a complete correction of a genetic disorder or the replacement of multiple genes in somatic cells is not yet possible. Only a few of the many clinical tries are in the advanced stages.[10]

Germline cell therapy alters the genome of germinal cells. Specifically, it targets eggs, sperm, and very early embryos. Genetic changes made to germline cells affect every cell in the resulting individuals body and can also be passed on to their offspring. The practice of germline cell therapy is currently banned in several countries, but has not been banned in the US.

Go here to see the original:
Human genetic engineering - Wikipedia, the free encyclopedia

Posted in Genetic Engineering | Comments Off on Human genetic engineering – Wikipedia, the free encyclopedia

Genetic Engineering in Agriculture | Union of Concerned Scientists

Posted: at 4:46 pm

Few topics in agriculture are more polarizing than genetic engineering (GE), the process of manipulating an organisms genetic materialusually using genes from other speciesin an effort to produce desired traits such as higher yield or drought tolerance.

GE has been hailed by some as an indispensable tool for solving the worlds food problems, and denounced by others as an example of human overreaching fraught with unknown, potentially catastrophic dangers.

UCS experts analyze the applications of genetic engineering in agricultureparticularly in comparison to other optionsand offer practical recommendations based on that analysis.

Supporters of GE in agriculture point to a multitude of potential benefits of engineered crops, including increased yield, tolerance of drought, reduced pesticide use, more efficient use of fertilizers, and ability to produce drugs or other useful chemicals. UCS analysis shows that actual benefits have often fallen far short of expectations.

While the risks of genetic engineering have sometimes been exaggerated or misrepresented, GE crops do have the potential to cause a variety of health problems and environmental impacts. For instance, they may produce new allergens and toxins, spread harmful traits to weeds and non-GE crops, or harm animals that consume them.

At least one major environmental impact of genetic engineering has already reached critical proportions: overuse of herbicide-tolerant GE crops has spurred an increase in herbicide use and an epidemic of herbicide-resistant "superweeds," which will lead to even more herbicide use.

How likely are other harmful GE impacts to occur? This is a difficult question to answer. Each crop-gene combination poses its own set of risks. While risk assessments are conducted as part of GE product approval, the data are generally supplied by the company seeking approval, and GE companies use their patent rights to exercise tight control over research on their products.

In short, there is a lot we don't know about the risks of GEwhich is no reason for panic, but a good reason for caution.

Original post:
Genetic Engineering in Agriculture | Union of Concerned Scientists

Posted in Genetic Engineering | Comments Off on Genetic Engineering in Agriculture | Union of Concerned Scientists

Genetic Engineering and Biotechnology – Organic Consumers …

Posted: at 4:46 pm

Cost of GMO Food Labeling

Big Biotech loves to claim that GMO labels on food would be costly and drive up the price of food for consumers. But Joanna Shepherd-Bailey, PhD, and renowned tenured law professor from Emory, has issued a report that shows that GMO labeling would likely result in no increase in consumer costs at all.

New Report by Earth Open Source

However, a large and growing body of scientific and other authoritative evidence shows that these claims are not true. On the contrary, evidence presented in this report indicates that GM crops:

Based on the evidence presented in this report, there is no need to take risks with GM crops when effective, readily available, and sustainable solutions to the problems that GM technology is claimed to address already exist.

Conventional plant breeding, in some cases helped by safe modern technologies like gene mapping and marker assisted selection, continues to outperform GM in producing high-yield, drought-tolerant, and pest- and disease-resistant crops that can meet our present and future food needs.

See the rest here:
Genetic Engineering and Biotechnology - Organic Consumers ...

Posted in Genetic Engineering | Comments Off on Genetic Engineering and Biotechnology – Organic Consumers …

Blue light phototherapy kills antibiotic-resistant bacteria, according to new studies

Posted: at 4:46 pm

PUBLIC RELEASE DATE:

16-Dec-2013

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, December16, 2013--Blue light has proven to have powerful bacteria-killing ability in the laboratory. The potent antibacterial effects of irradiation using light in the blue spectra have now also been demonstrated in human and animal tissues. A series of groundbreaking articles that provide compelling evidence of this effect are published in Photomedicine and Laser Surgery, a peer-reviewed journal published by Mary Ann Liebert, Inc., publishers. The articles are available on the Photomedicine and Laser Surgery website.

"Bacterial resistance to drugs poses a major healthcare problem," says Co-Editor-in-Chief Chukuka S. Enwemeka, PhD, Dean, College of Health Sciences, University of Wisconsin--Milwaukee, in the accompanying Editorial "Antimicrobial Blue Light: An Emerging Alternative to Antibiotics," citing the growing number of deadly outbreaks worldwide of methicillin-resistant Staphylococcus aureus (MRSA). The articles in this issue of Photomedicine and Laser Surgery provide evidence that "blue light in the range of 405-470 nm wavelength is bactericidal and has the potential to help stem the ongoing pandemic of MRSA and other bacterial infections."

In the article "Effects of Photodynamic Therapy on Gram-Positive and Gram-Negative Bacterial Biofilms by Bioluminescence Imaging and Scanning Electron Microscopic Analysis," Aguinaldo S. Garcez, PhD and coauthors show that photodynamic therapy and methylene blue delivered directly into the root canal of a human tooth infected with a bacterial biofilm was able to destroy both Gram-positive and Gram-negative bacteria, disrupt the biofilms, and reduce the number of bacteria adhering to the tooth.

Raymond J. Lanzafame, MD, MBA, and colleagues demonstrated significantly greater bacterial reduction in the treatment of pressure ulcers in mice using a combination of photoactivated collagen-embedded compounds plus 455 nm diode laser irradiation compared to irradiation alone or no treatment. The antibacterial effect of the combined therapy increased with successive treatments, report the authors in the article "Preliminary Assessment of Photoactivated Antimicrobial Collagen on Bioburden in a Murine Pressure Ulcer Model."

In the article "Wavelength and Bacterial Density Influence the Bactericidal Effect of Blue Light on Methicillin-Resistant Staphylococcus aureus (MRSA)," Violet Bumah, PhD and coauthors compared the bacteria-killing power of 405 nm versus 470 nm light on colonies of resistant Staph aureus and how the density of the bacterial colonies could limit light penetration and the bactericidal effects of treatment.

###

About the Journal

Follow this link:
Blue light phototherapy kills antibiotic-resistant bacteria, according to new studies

Posted in Genetic Engineering | Comments Off on Blue light phototherapy kills antibiotic-resistant bacteria, according to new studies

Integrated approaches to customize fungal cell factories

Posted: at 4:46 pm

PUBLIC RELEASE DATE:

19-Dec-2013

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 x2156 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, December 19, 2013The natural ability of certain fungi to break down complex substances makes them very valuable microorganisms to use as cell factories in industrial processes. Advances in metabolic engineering and systems biology are helping to customize and optimize these fungi to produce specific bioproducts, as described in a Review article in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Industrial Biotechnology website.

In the Review "Integrated Approaches for Assessment of Cellular Performance in Industrially Relevant Filamentous Fungi," Mhairi Workman, Mikael Anderson, and Jette Thykaer, Technical University of Denmark, Lyngby, focus on how to apply state-of-the-art analytical tools and technologies to characterize industrially relevant fungi, improve fungal cell factories, and "utilize fungal bioproduct diversity to its full potential."

The Review is part of an IB IN DEPTH special section on Fungal Biology led by Guest Editors Scott Baker, PhD, Pacific Northwest National Laboratory (PNNL), Richland, WA, and Adrian Tsang, PhD, Concordia University, Montreal, Canada. Additional Original Research articles include "Kinetic Modeling of -Glucosidases and Cellobiohydrolases Involved in Enzymatic Hydrolysis of Cellulose," by Marie Chauve, PhD, et al. from IFP Energies nouvelles (Solaize and Rueil-Malmaison, France), European Synchrotron Radiation Facility and Centre de Recherches sur les Macromolecules Vegetales (Grenoble, France); and "Comparative Genomics Analysis of Trichoderma reesei Strains," by Hideaki Koike, PhD, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, and colleagues from the US Department of Energy (DOE) Joint Genome Institute (Walnut Creek, CA), and PNNL.

Also included in the Fungal Biology special section are two IB Interviews: with Randy Berka of Novozymes (Davis, CA); and Igor Grigoriev, PhD, US DOE Joint Genome Institute.

"Once again, one of IB's Editorial Board members has stepped forward to tell a compelling story of industrial biotechnology development," says Co-Editor-in-Chief Larry Walker, PhD, Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY. "The opportunities to exploit fungal biotechnology for industrial chemicals and energy are unlimited."

###

About the Journal

Read more here:
Integrated approaches to customize fungal cell factories

Posted in Genetic Engineering | Comments Off on Integrated approaches to customize fungal cell factories

O.M.D. – Genetic Engineering – Video

Posted: November 11, 2013 at 5:41 pm


O.M.D. - Genetic Engineering

By: Countdown Chart History

More here:
O.M.D. - Genetic Engineering - Video

Posted in Genetic Engineering | Comments Off on O.M.D. – Genetic Engineering – Video

Medical Educational Apps QVprep Lite Learn Genetic and genetic engineering app video part 6 7 8 9 – Video

Posted: November 10, 2013 at 8:42 pm


Medical Educational Apps QVprep Lite Learn Genetic and genetic engineering app video part 6 7 8 9
QVprep Lite Genetic Engineering is FREE and has limited content. The app gives you the option to buy the paid QVprep Genetic Engineering app which has exhaus...

By: Deep Larry

View post:
Medical Educational Apps QVprep Lite Learn Genetic and genetic engineering app video part 6 7 8 9 - Video

Posted in Genetic Engineering | Comments Off on Medical Educational Apps QVprep Lite Learn Genetic and genetic engineering app video part 6 7 8 9 – Video

Medical Educational Apps QVPrep Lite Learn genetics and genetic engineering video Part 2 3 4 5 – Video

Posted: at 8:42 pm


Medical Educational Apps QVPrep Lite Learn genetics and genetic engineering video Part 2 3 4 5
QVprep Lite Genetic Engineering is FREE and has limited content. The app gives you the option to buy the paid QVprep Genetic Engineering app which has exhaus...

By: Deep Larry

Continue reading here:
Medical Educational Apps QVPrep Lite Learn genetics and genetic engineering video Part 2 3 4 5 - Video

Posted in Genetic Engineering | Comments Off on Medical Educational Apps QVPrep Lite Learn genetics and genetic engineering video Part 2 3 4 5 – Video

Medical Educational apps QVprep Learn genetics and Genetic Engineering app video part 13 14 – Video

Posted: at 8:42 pm


Medical Educational apps QVprep Learn genetics and Genetic Engineering app video part 13 14
QVprep Lite Genetic Engineering is FREE and has limited content. The app gives you the option to buy the paid QVprep Genetic Engineering app which has exhaus...

By: Deep Larry

Link:
Medical Educational apps QVprep Learn genetics and Genetic Engineering app video part 13 14 - Video

Posted in Genetic Engineering | Comments Off on Medical Educational apps QVprep Learn genetics and Genetic Engineering app video part 13 14 – Video

Medical Educational apps QVprep Lite Learn Genetics and Genetic Engineering app video part 10 11 1 – Video

Posted: at 8:42 pm


Medical Educational apps QVprep Lite Learn Genetics and Genetic Engineering app video part 10 11 1
QVprep Lite Genetic Engineering is FREE and has limited content. The app gives you the option to buy the paid QVprep Genetic Engineering app which has exhaus...

By: Deep Larry

See the original post here:
Medical Educational apps QVprep Lite Learn Genetics and Genetic Engineering app video part 10 11 1 - Video

Posted in Genetic Engineering | Comments Off on Medical Educational apps QVprep Lite Learn Genetics and Genetic Engineering app video part 10 11 1 – Video

Page 189«..1020..188189190191..200210..»