The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Category Archives: Genetic Engineering
Genetic Engineering Careers in India : How to become a …
Posted: September 10, 2015 at 12:42 pm
Genetic Engineering (GE) is a highly complicated and advanced branch of science which involves a wide range of techniques used in changing the genetic material in the DNA code in a living organism. 'Genetic Engineering' means the deliberate modification of the characters of an organism by the manipulation of its genetic material.Genetic engineering comes under the broad heading of Biotechnology. There is a great scope in this field as the demand for genetic engineers are growing in India as well as abroad.
A cell is the smallest living unit, the basic structural and functional unit of all living matter, whether a plant, an animal, humans or a fungus. While some organisms are single celled, others like plants, animals, humans etc are made up of a lot more cells. For eg humans have approximately 3 million cells. A cell is composed of a 'cell membrane' enclosing the whole cell, many 'organelles' equivalent to the organs in the body and a 'nucleus' which is the command centre of the cell. Inside the nucleus are the chromosomes which is the storage place for all genetic (hereditary) information which determines the nature and characteristics of an organism. This information is written along the thin thread, called DNA, a nucleic acid which constitutes the genes (units of heredity). The DNA governs cell growth and is responsible for the transmission of genetic information from one generation to the next.
Genetic engineering aims to re-arrange the sequence of DNA in gene using artificial methods. The work of a genetic engineer involves extracting the DNA out of one organism, changing it using chemicals or radiation and subsequently putting it back into the same or a different organism. For eg: genes and segments of DNA from one species is taken and put into another species. They also study how traits and characteristics are transmitted through the generations, and how genetic disorders are caused. Their research involves researching the causes and discovering potential cures if any.
Genetic engineering have specialisations related to plants, animals and human beings. Genetic engineering in plants and animals may be to improve certain natural characteristics of value, to increase resistance to disease or damage and to develop new characteristics etc. It is used to change the colour, size, texture etc of plants otherwise known as GM (Genetically Modified) foods.GE in humans can be to correct severe hereditary defects by introducing normal genes into cells in place of missing or defective ones.
See the article here:
Genetic Engineering Careers in India : How to become a ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering Careers in India : How to become a …
Genetic engineering – Memory Alpha, the Star Trek Wiki
Posted: at 12:42 pm
A portrait of Khan Noonien Singh, a man who was a product of genetic engineering
Genetic engineering, or genetic manipulation was a process in which the DNA of an organism was selectively altered through artificial means. Genetic engineering was often used to produce "custom" organisms, such as for agricultural or medical purposes, as well as to produce biogenic weapons. The most common application of genetic engineering on intelligent beings in the Federation was corrective DNA resequencing for genetic disorders. A far more dubious application of genetic engineering was the genetic enhancement of individuals to produce improved senses, strength, intelligence, etc.
During Earth's 20th century, efforts to produce "superhumans" resulted in the Eugenics Wars. Genetically engineered individuals such as Khan Noonien Singh attempted to seize power. (TOS: "Space Seed")
This would lead to the banning of genetic engineering on Earth by the mid-22nd century, even research which could be used to cure critical illnesses. This ban was implemented because of the general fear of creating more tyrants such as Khan. It was also felt that parents would feel compelled to have their children genetically engineered, especially if "enhanced" individuals were allowed to compete in normal society.
Some, including geneticist Arik Soong, argued that it was simply convenient for humanity to denounce the attempts at genetic "improvement" of humanity, that it was inherently evil because of the Eugenics Wars. He argued that the source of the problem, in fact, wasn't the technology, but humanity's own inability to use it wisely. Imprisoned for, among other crimes, stealing the embryos of a number of Augment children, Soong wrote long treatises on the subject of genetic augmentations and improvements. His works were routinely taken and placed into storage (although his jailers often told him that his work was vaporized). Captain Jonathan Archer expressed his hope to Soong that research into genetic engineering that could cure life-threatening diseases would someday be resumed. (ENT: "Borderland", "The Augments")
Others, however, chose to establish isolated colonies, as became the case with the Genome colony on Moab IV, which was established in 2168. It became a notable and successful example of Human genetic engineering in which every individual was genetically tailored from birth to perform a specific role in society. However, after a five-day visit by the USS Enterprise-D when the ship came to the colony in an effort to save it from an approaching neutron star which, eventually, the craft was able to effectively redirect twenty-three colonists left the colony aboard the craft, possibly causing significant damage to the structure of their society. The reason for the societal split was that those who left the colony had realized their organized, pre-planned world had certain limitations, lacking opportunities to grow that were offered by the Enterprise. (TNG: "The Masterpiece Society")
By the 24th century, the United Federation of Planets allowed limited use of genetic engineering to correct existing genetically related medical conditions. Persons known to be genetically enhanced, however, were not allowed to serve in Starfleet, and were especially banned from practicing medicine. (TNG: "Genesis", DS9: "Doctor Bashir, I Presume")
Nevertheless, some parents attempted to secretly have their children genetically modified. (DS9: "Doctor Bashir, I Presume") Unfortunately, most of these operations were performed by unqualified physicians, resulting in severe psychological problems in the children due to their enhancements being only partially successful, such as a patient's senses being enhanced while their ability to process the resulting data remained at a Human norm. (DS9: "Statistical Probabilities")
In some cases, genetic engineering can be permitted to be performed in utero when dealing with a developing fetus to correct any potential genetic defects that could handicap the child as they grew up. Chakotay's family history included a defective gene that made those who possessed it prone to hallucinations, the gene afflicting his grandfather in Chakotay's youth, although the gene was suppressed in Chakotay himself. (VOY: "The Fight") In 2377, The Doctor performed prenatal genetic modification on Miral Paris to correct a spinal deviation, a congenital defect that tends to run in Klingon families; Miral's mother had undergone surgery to correct the defect in herself at a young age. (VOY: "Lineage")
Read the original:
Genetic engineering - Memory Alpha, the Star Trek Wiki
Posted in Genetic Engineering
Comments Off on Genetic engineering – Memory Alpha, the Star Trek Wiki
Genetic Engineering in Agriculture | Union of Concerned …
Posted: at 12:42 pm
Yes. We understand the potential benefits of the technology, and support continued advances in molecular biology, the underlying science. But we are critics of the business models and regulatory systems that have characterized early deployment of these technologies. GE has proved valuable in some areas (as in the contained use of engineered bacteria in pharmaceutical development), and some GE applications could turn out to play a useful role in food production.
Thus far, however, GE applications in agriculture have only made the problems of industrial monocropping worse. Rather than supporting a more sustainable agriculture and food system with broad societal benefits, the technology has been employed in ways that reinforce problematic industrial approaches to agriculture. Policy decisions about the use of GE have too often been driven by biotech industry public relations campaigns, rather than by what science tells us about the most cost-effective ways to produce abundant food and preserve the health of our farmland.
These are a few things policy makers should do to best serve the public interest:
Here is the original post:
Genetic Engineering in Agriculture | Union of Concerned ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering in Agriculture | Union of Concerned …
Genetic Engineering – Oswego City School District Regents …
Posted: at 12:42 pm
Vocabulary: selective breeding, recombinant DNA, artificial selection, inbreeding, hybridization, genetic engineering, restriction enzyme, cloning, genetic mapping, Human Genome Project
Genetic Engineering Throughout recorded history, humans have used selective breeding and other methods to produce organisms with desirable traits. Our current understanding of genetics and heredity allows for the manipulation of genes and the development of new combinations of traits and new varieties of organisms. This includes various aspects of DNA technology, including recombinant DNA technology. Scientists have also developed many ways of determining the genetic makeup of different organisms, including humans.
Selective Breeding For thousands of years new varieties of cultivated plants and domestic animals have resulted from selective breeding for particular traits. Some selective breeding techniques include artificial selection, where individuals with desirable traits are mated to produce offspring with those traits. A variation of this process traditionally used in agriculture is inbreeding, where the offspring produced by artificial selection are mated with one another to reinforce those desirable traits. Hybridization is a special case of selective breeding. This involves crossing two individuals with different desirable traits to produce offspring with a combination of both desirable traits. An example of this are Santa Gertrudis cattle, which were developed by breeding English shorthorn cattle, which provided for good beef, but lacked heat resistance, with Brahman cattle from India which were highly resistant to heat and humidity. The Santa Gertrudis breed of cattle has excellent beef, and thrives in hot, humid environments.
An Example of Selective Breeding
Brahman cattle: Good resistance to heat but poor beef.
English shorthorn cattle: Good beef but poor heat resistance.
Santa Gertrudis cattle: Formed by crossing Brahman and English shorthorns; has good heat resistance and beef.
Genetic Engineering In recent years new varieties of farm plants and animals have been engineered bymanipulating their genetic instructions to produce new characteristics. This technology is known as genetic engineering or recombinant DNA technology. Different enzymes can be used to cut, copy (clone), and move segments of DNA. An important category of enzyme used to cut a section of a gene and its DNA from an organism is known as a restriction enzyme. When this piece of DNA, which has been cut out of one organism, is placed in another organism, that section of gene will express the characteristics that were expressed by this gene in the organism it was taken from.
An Example of Genetic Engineering
Knowledge of genetics, including genetic engineering, is making possible new fields of health care. Genetic engineering is being used to engineer many new types of more efficient plants and animals, as well as provide chemicals needed for human health care. It may be possible to use aspect of genetic engineering to correct some human health defects. Some examples of chemicals being mass produced by human genes in bacteria include insulin, human growth hormone, and interferon. Substances from genetically engineered organisms have reduced the cost and side effects of replacing missing human body chemicals. While genetic engineering technology has many practical benefits, its use has also raised many legitimate ethical concerns.
Other Genetic Technologies Cloning involves producing a group of genetically identical offspring from the cells of an organism. This technique may greatly increase agricultural productivity. Plants and animals with desirable qualities can be rapidly produced from the cells of a single organism.
Genetic mapping, which is the location of specific genes inside the chromosomes of cells makes it possible to detect, and perhaps in the future correct defective genes that may lead to poor health. The human genome project has involved the mapping of the major genes influencing human traits, thus allowing humans to know the basic framework of their genetic code
Knowledge of genetics is making possible new fields of health care. Genetic mapping in combination with genetic engineering and other genetic technologies may make it possible to correct defective genes that may lead to poor health.
There are many ethical concerns to these advanced genetic technologies, including possible problems associated with the cloning of humans. Another down side to genetic mapping technologies it is possible that some organizations may use this genetic information against individuals.
Previous Page Back to TopNext page
Read the original post:
Genetic Engineering - Oswego City School District Regents ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering – Oswego City School District Regents …
Genetic Engineering – HowStuffWorks
Posted: August 14, 2015 at 8:45 pm
Genetic Engineering, the process of extracting DNA (deoxyribonucleic acid, which makes up the genes of all living things) from one organism and combining it with the DNA of another organism, thus introducing new hereditary traits into the recipient organism. The nature and characteristics of every living creature is determined by the special combinations of genes carried by its cells. The slightest alteration in these combinations can bring about significant changes in an organism and also its progeny. The science of devising techniques of modifying or controlling genes and genetic combinations is referred to as genetic engineering. It was practiced in one form or another in the past by farmers and agriculturists trying to create economically viable species of plants and animals through various breeding techniques Genetic engineering, as a science, was developed in the mid-1970's primarily to create new strains of microorganisms that produce certain chemicals useful in manufacturing or as drugs. Genetic engineering is now also applied to improving plants and creating transgenic animals (animals containing foreign genetic material).
Some persons oppose genetic engineering on religious, ethical, or social grounds. Among the religious questions is whether humans have the right to transfer traits from one organism to another. A social concern is the possibility of creating harmful organisms that, if accidentally released into the environment, could cause epidemics.The creation of human clones, for example, is facing serious opposition especially on moral grounds. Organizations, such as the National Institutes of Health (NIH), are seeking to control the harmful effects of genetic engineering by imposing guidelines and safety measures for genetic experimentation. Treatment of hereditary defects through gene transplantation and controlled interchange of genes between specified species was approved in 1985 and 1987 respectively by the NIH and the National Academy of Sciences. The USDA has framed regulations for the genetic alteration of plants by plant breeders.
The U.S. Supreme Court ruled in 1980 that genetically engineered microorganisms could be patented. In 1988 the U.S. Patent and Trademark Office issued its first patent for a higher form of life, a transgenic mouse that is highly susceptible to certain cancers that appear frequently in humans. This mouse is used in cancer research.
Go here to see the original:
Genetic Engineering - HowStuffWorks
Posted in Genetic Engineering
Comments Off on Genetic Engineering – HowStuffWorks
Interactives . DNA . Genetic Engineering
Posted: August 8, 2015 at 1:42 pm
Genetic engineering is the process of removing a gene from one organism and putting it into another. Often, the removed genes are put into bacteria or yeast cells so that scientists can study the gene or the protein it produces more easily. Sometimes, genes are put into a plant or an animal.
One of the first genetic engineering advances involved the hormone insulin. Diabetes, a medical condition that affects millions of people, prevents the body from producing enough insulin necessary for cells to properly absorb sugar. Diabetics used to be treated with supplementary insulin isolated from pigs or cows. Although this insulin is very similar to human insulin, it is not identical. Bovine insulin is antigenic in humans. Antibodies produced against it would gradually destroy its efficacy.
Scientists got around the problem by putting the gene for human insulin into bacteria. The bacteria's cellular machinery, which is identical to the cellular machinery of all living things, "reads" the gene, and turns it into a protein-human insulin-through a process called translation.
Read the original here:
Interactives . DNA . Genetic Engineering
Posted in Genetic Engineering
Comments Off on Interactives . DNA . Genetic Engineering
genetic engineering | Britannica.com
Posted: July 14, 2015 at 1:42 pm
genetic engineering,the artificial manipulation, modification, and recombination of DNA or other nucleic acid molecules in order to modify an organism or population of organisms.
The term genetic engineering initially meant any of a wide range of techniques for the modification or manipulation of organisms through the processes of heredity and reproduction. As such, the term embraced both artificial selection and all the interventions of biomedical techniques, among them artificial insemination, in vitro fertilization (e.g., test-tube babies), sperm banks, cloning, and gene manipulation. But the term now denotes the narrower field of recombinant DNA technology, or gene cloning (see Figure), in which DNA molecules from two or more sources are combined either within cells or in vitro and are then inserted into host organisms in which they are able to propagate. Gene cloning is used to produce new genetic combinations that are of value to science, medicine, agriculture, or industry.
DNA is the carrier of genetic information; it achieves its effects by directing the synthesis of proteins. Most recombinant DNA technology involves the insertion of foreign genes into the plasmids of common laboratory strains of bacteria. Plasmids are small rings of DNA; they are not part of the bacteriums chromosome (the main repository of the organisms genetic information). Nonetheless, they are capable of directing protein synthesis, and, like chromosomal DNA, they are reproduced and passed on to the bacteriums progeny. Thus, by incorporating foreign DNA (for example, a mammalian gene) into a bacterium, researchers can obtain an almost limitless number of copies of the inserted gene. Furthermore, if the inserted gene is operative (i.e., if it directs protein synthesis), the modified bacterium will produce the protein specified by the foreign DNA.
A key step in the development of genetic engineering was the discovery of restriction enzymes in 1968 by the Swiss microbiologist Werner Arber. However, type II restriction enzymes, which are essential to genetic engineering for their ability to cleave a specific site within the DNA (as opposed to type I restriction enzymes, which cleave DNA at random sites), were not identified until 1969, when the American molecular biologist Hamilton O. Smith purified this enzyme. Drawing on Smiths work, the American molecular biologist Daniel Nathans helped advance the technique of DNA recombination in 197071 and demonstrated that type II enzymes could be useful in genetic studies. Genetic engineering itself was pioneered in 1973 by the American biochemists Stanley N. Cohen and Herbert W. Boyer, who were among the first to cut DNA into fragments, rejoin different fragments, and insert the new genes into E. coli bacteria, which then reproduced.
Genetic engineering has advanced the understanding of many theoretical and practical aspects of gene function and organization. Through recombinant DNA techniques, bacteria have been created that are capable of synthesizing human insulin, human growth hormone, alpha interferon, a hepatitis B vaccine, and other medically useful substances. Plants may be genetically adjusted to enable them to fix nitrogen, and genetic diseases can possibly be corrected by replacing bad genes with normal ones. Nevertheless, special concern has been focused on such achievements for fear that they might result in the introduction of unfavourable and possibly dangerous traits into microorganisms that were previously free of theme.g., resistance to antibiotics, production of toxins, or a tendency to cause disease.
The new microorganisms created by recombinant DNA research were deemed patentable in 1980, and in 1986 the U.S. Department of Agriculture approved the sale of the first living genetically altered organisma virus, used as a pseudorabies vaccine, from which a single gene had been cut. Since then several hundred patents have been awarded for genetically altered bacteria and plants.
Excerpt from:
genetic engineering | Britannica.com
Posted in Genetic Engineering
Comments Off on genetic engineering | Britannica.com
What Is Genetic Engineering?
Posted: May 14, 2015 at 10:42 am
What is Genetic Engineering?
Written by: Dr. Ricarda Steinbrecher WEN Trust, July 1998
Synthesis/Regeneration: A Magazine of Green Social Thought, Vol. 18 (Winter 1999), pp. 9-12 [Note: For technical reasons, the graphics accompanying the orginal article have not been reproduced here.]
We find it mixed in our food on the shelves in the supermarket--genetically engineered soybeans and maize. We find it growing in a plot down the lane, test field release sites with genetically engineered rape seed, sugar beet, wheat, potato, strawberries and more. There has been no warning and no consultation.
It is variously known as genetic engineering, genetic modification or genetic manipulation. All three terms mean the same thing, the reshuffling of genes usually from one species to another; existing examples include: from fish to tomato or from human to pig. Genetic engineering (GE) comes under the broad heading of biotechnology.
But how does it work? If you want to understand genetic engineering it is best to start with some basic biology.
What is a cell? A cell is the smallest living unit, the basic structural and functional unit of all living matter, whether that is a plant, an animal or a fungus.Some organisms such as amoebae, bacteria, some algae and fungi are single-celled - the entire organism is contained in just one cell. Humans are quite different and are made up of approximately 3 million cells -(3,000,000,000,000 cells). Cells can take many shapes depending on their function, but commonly they will look like a brick with rounded comers or an angular blob - a building block.Cells are stacked together to make up tissues, organs or structures (brain, liver, bones, skin, leaves, fruit etc.).
In an organism, cells depend on each other to perform various functions and tasks; some cells will produce enzymes, others will store sugars or fat; different cells again will build the skeleton or be in charge of communication like nerve cells; others are there for defence, such as white blood cells or stinging cells in jelly fish and plants. In order to be a fully functional part of the whole, most cells have got the same information and resources and the same basic equipment.
A cell belonging to higher organisms (e.g. plant or animal) is composed of: a cell MEMBRANE enclosing the whole cell. (Plant cells have an additional cell wall for structural reinforcement.) many ORGANELLES, which are functional components equivalent to the organs in the body of an animal e.g. for digestion, storage, excretion. a NUCLEUS, the command centre of the cell. It contains all the vital information needed by the cell or the whole organism to function, grow and reproduce. This information is stored in the form of a genetic code on the chromosomes, which are situated inside the nucleus.
Proteins are the basic building materials of a cell, made by the cell itself. Looking at them in close-up they consist of a chain of amino-acids, small specific building blocks that easily link up. Though the basic structure of proteins is linear, they are usually folded and folded again into complex structures. Different proteins have different functions. They can be transport molecules (e.g. oxygen binding haemoglobin of the red blood cells); they can be antibodies, messengers, enzymes (e.g. digestion enzymes) or hormones (e.g. growth hormones or insulin). Another group is the structural proteins that form boundaries and provide movement, elasticity and the ability to contract. Muscle fibres, for example, are mainly made of proteins. Proteins are thus crucial in the formation of cells and in giving cells the capacity to function properly.
More here:
What Is Genetic Engineering?
Posted in Genetic Engineering
Comments Off on What Is Genetic Engineering?
Too few minority women breastfeed — can ob/gyns change their minds?
Posted: April 14, 2015 at 9:45 pm
IMAGE:Breastfeeding Medicine, the official journal of the Academy of Breastfeeding Medicine, is an authoritative, peer-reviewed, multidisciplinary journal published 10 times per year in print and online. The Journal publishes original... view more
Credit: Mary Ann Liebert, Inc., publishers
New Rochelle, NY, April 14, 2015--Obstetricians and gynecologists have a unique opportunity to educate and encourage minority women to nurse their infants to help reduce persistent racial and ethnic disparities in breastfeeding. As part of prenatal care, ob/gyns should promote the known health benefits of breastfeeding and help identify potential barriers their minority patients may face, according to an article in Breastfeeding Medicine, the official journal of the Academy of Breastfeeding Medicine published by Mary Ann Liebert, Inc., publishers. The article is available free on the Breastfeeding Medicine website until May 14, 2015.
Coauthors Katherine Jones, Michael Power, PhD, John Queenan, and Jay Schulkin, PhD, from the American College of Obstetricians and Gynecologists, American University, and Georgetown University, Washington, DC, present data from a comprehensive literature review demonstrating lower rates of breastfeeding initiation and continuation for some racial and ethnic groups in the U.S. compared to White women. By understanding the cultural and social factors and the inadequacies of the healthcare system that may affect a minority woman's decision to breastfeed and her attitudes toward nursing, ob/gyns may be better able to help their patients overcome obstacles to nursing.
In the article "Racial and Ethnic Disparities in Breastfeeding," the authors provide information such as what programs and techniques can positively impact these rates and they urge ob/gyns to use these data to support breastfeeding in their clinical practices and in public policy.
"The persistent disparities cast shame on our healthcare system, a system that continues to short change that part of our population that is most in need of the benefits of breastfeeding," says Arthur I. Eidelman, MD, Editor-in-Chief of Breastfeeding Medicine. "Hopefully clinicians will incorporate the information in this article into their daily activities and reverse this negative situation."
###
About the Journal
Breastfeeding Medicine, the official journal of the Academy of Breastfeeding Medicine, is an authoritative, peer-reviewed, multidisciplinary journal published 10 times per year in print and online. The Journal publishes original scientific papers, reviews, and case studies on a broad spectrum of topics in lactation medicine. It presents evidence-based research advances and explores the immediate and long-term outcomes of breastfeeding, including the epidemiologic, physiologic, and psychological benefits of breastfeeding. Tables of content and a sample issue may be viewed on the Breastfeeding Medicine website.
About the Publisher
The rest is here:
Too few minority women breastfeed -- can ob/gyns change their minds?
Posted in Genetic Engineering
Comments Off on Too few minority women breastfeed — can ob/gyns change their minds?
Africa: Photosynthesis Upgrade Proposed to Raise Crop Yields
Posted: at 9:45 pm
By Edd Gent
Supercomputers and genetic engineering could help boost crops' ability to convert sunlight into energy and tackle looming food shortages, according to a team of researchers.
Photosynthesis is far from its theoretical maximum efficiency, say the authors of a paper in Cell, published on 26 March. They say that supercomputing advances could allow scientists to model every stage in the process and identify bottlenecks in improving plant growth.
But the authors add that far more science spending is needed to increase yields through these sophisticated genetic manipulations, which include refining the photosynthesis process.
"Anything we discover in the lab now won't be in a farmer's field for 20 to 30 years," says lead author Stephen Long, a plant biologist at the University of Illinois at Urbana-Champaign (UIUC) in the United States. "If we discover we have a crisis then, it's already too late."
The paper says that, by 2050, the world is predicted to require 85 per cent more staple food crops than were produced in 2013. It warns that yield gains from last century's Green Revolution are stagnating as traditional approaches to genetic improvement reach biological limits.
Instead, the group says crops such as rice and wheat, which evolved the more common C3 method of photosynthesis, could be upgraded to the more efficient C4 process found in crops such as maize, sorghum and sugar cane.
This could be done by transplanting genes from C4 plants to widen the spectrum of light the receiving plants can process and improve their growth, the scientists say.
Long's lab has demonstrated in a soon-to-be-published paper that inserting genes from cyanobacteria, a type of photosynthetic bacteria, into crop plants can make photosynthesis 30 per cent more efficient. A project backed by the philanthropic Bill & Melinda Gates Foundation is now attempting to convert rice from C3 to C4
The paper identifies two steps necessary to achieve these gains. First, techniques that allow researchers to insert genes into targeted parts of the genome must be translated from microbe biotechnology into plant biotechnology. Second, existing partial computer models of crop plants must be combined into a complete simulation.
Read the original:
Africa: Photosynthesis Upgrade Proposed to Raise Crop Yields
Posted in Genetic Engineering
Comments Off on Africa: Photosynthesis Upgrade Proposed to Raise Crop Yields