Page 106«..1020..105106107108..120130..»

Category Archives: Robotics

Vaarst launches to drive the future of marine robotics through data focus | RoboticsTomorrow – Robotics Tomorrow

Posted: March 25, 2021 at 2:47 am

Launching today, robotics technology player Vaarst will give offshore and marine robotics new capabilities through retrofitted artificial intelligence and autonomy.

Bristol, UK; 24 March 2021. Vaarst, a technology spin-off from leading subsea robotic and hydrographic survey company Rovco, was formally launched today with the goal of revolutionising the offshore robotics sector - leveraging intelligent data flows for smart asset management and creating an energy-efficient and more sustainable future.

Vaarst will target the energy and marine sectors through its innovative technologies, such as SubSLAM X2 - an intelligent data collection system that delivers robotic spatial awareness and live 3D point clouds to any device in the world, without costly positioning systems, thereby saving many project days. This, combined with the company's machine learning and autonomy expertise will then provide the very best in efficient data collection and AI interpretation.

The new spinout company, Vaarst, is predicting immediate 2021 revenues over 1m rising to 20m+ rapidly in the next few years.

Vaarst CEO and Founder, Brian Allen, said: "Autonomous robotics are the key to reducing the cost of offshore operations. At the same time, digitalisation of field assets is essential as the industry evolves, marrying these two concepts is needed to realise the real benefit of modern tech. It's the data that has to drive the vehicles. Vaarst is committed to unlocking the potential of offshore robotics for all.

He continues: "We're tremendously excited about the future, and really delivering our customers' digital and robotic ambitions."

Vaarst will operate globally, with headquarters in Bristol, and has 29 employees with plans to grow to 70+ by end of 2022. The company is a technology spin-off of Rovco which was founded in 2015 and has invested heavily in real-time artificial intelligence-based 3D vision and autonomy systems. Future plans will see Vaarst take its offering to the wider industrial robotics global markets in sectors such as mining, construction, farming and land survey.

Here is the original post:

Vaarst launches to drive the future of marine robotics through data focus | RoboticsTomorrow - Robotics Tomorrow

Posted in Robotics | Comments Off on Vaarst launches to drive the future of marine robotics through data focus | RoboticsTomorrow – Robotics Tomorrow

Reinforcement learning with artificial microswimmers – Science

Posted: at 2:47 am

Abstract

Artificial microswimmers that can replicate the complex behavior of active matter are often designed to mimic the self-propulsion of microscopic living organisms. However, compared with their living counterparts, artificial microswimmers have a limited ability to adapt to environmental signals or to retain a physical memory to yield optimized emergent behavior. Different from macroscopic living systems and robots, both microscopic living organisms and artificial microswimmers are subject to Brownian motion, which randomizes their position and propulsion direction. Here, we combine real-world artificial active particles with machine learning algorithms to explore their adaptive behavior in a noisy environment with reinforcement learning. We use a real-time control of self-thermophoretic active particles to demonstrate the solution of a simple standard navigation problem under the inevitable influence of Brownian motion at these length scales. We show that, with external control, collective learning is possible. Concerning the learning under noise, we find that noise decreases the learning speed, modifies the optimal behavior, and also increases the strength of the decisions made. As a consequence of time delay in the feedback loop controlling the particles, an optimum velocity, reminiscent of optimal run-and-tumble times of bacteria, is found for the system, which is conjectured to be a universal property of systems exhibiting delayed response in a noisy environment.

Living organisms adapt their behavior according to their environment to achieve a particular goal. Information about the state of the environment is sensed, processed, and encoded in biochemical processes in the organism to provide appropriate actions or properties. These learning or adaptive processes occur within the lifetime of a generation, over multiple generations, or over evolutionarily relevant time scales. They lead to specific behaviors of individuals and collectives. Swarms of fish or flocks of birds have developed collective strategies adapted to the existence of predators (1), and collective hunting may represent a more efficient foraging tactic (2). Birds learn how to use convective air flows (3). Sperm have evolved complex swimming patterns to explore chemical gradients in chemotaxis (4), and bacteria express specific shapes to follow gravity (5).

Inspired by these optimization processes, learning strategies that reduce the complexity of the physical and chemical processes in living matter to a mathematical procedure have been developed (6). Many of these learning strategies have been implemented into robotic systems (79). One particular framework is reinforcement learning (RL), in which an agent gains experience by interacting with its environment (10). The value of this experience relates to rewards (or penalties) connected to the states that the agent can occupy. The learning process then maximizes the cumulative reward for a chain of actions to obtain the so-called policy. This policy advises the agent which action to take. Recent computational studies, for example, reveal that RL can provide optimal strategies for the navigation of active particles through flows (1113), the swarming of robots (1416), the soaring of birds (3), or the development of collective motion (17). The ability of how fish can harness the vortices in the flow field of others for energy-efficient swimming has been explored (18). Strategies of how to optimally steer active particles in a potential energy landscape (19) have been explored in simulations, and deep Q-learning approaches have been suggested to navigate colloidal robots in an unknown environment (20).

Artificial microswimmers are a class of active materials that integrate the fundamental functionality of persistent directed motion, common to their biological counterparts, into a user-designed microscopic object (21). Their motility has already revealed insights into a number of fundamental processes, including collective phenomena (2224), and they are explored for drug delivery (25) and environmental purposes (26). However, the integration of energy supply, sensing, signal processing, memory, and propulsion into a micrometer-sized artificial swimmer remains a technological challenge (27). Hence, external control strategies have been applied to introduce sensing and signal processing, yet only schemes with rigid rules simulating specific behaviors have been developed (2831). Combining elements of machine learning and real-world artificial microswimmers would considerably extend the current computational studies into real-world applications for the future development of smart artificial microswimmers (32).

Here, we incorporate algorithms of RL with external control strategies into the motion of artificial microswimmers in an aqueous solution. While the learning algorithm is running on a computer, we control a real agent acting in a real world subjected to thermal fluctuations, hydrodynamic and steric interactions, and many other influences. In this way, it is possible to include real-world objects in a simulation, which will help to close the so-called reality gap, i.e., the difference of pure in silico learning and real-world machine learning even at microscopic length scales (27). Our experimental investigation thus goes beyond previous purely computational studies (3, 1113, 20). It allows us to observe the whole learning process optimizing parameters, which are not accessible in studies of biological species, to identify the most important ingredients of the real dynamics and to set up more realistic, but still simple, models based on this information. It also provides a glimpse of the challenges of RL for objects at those length scales for future developments.

To couple machine learning with microswimmers, we used a light-controlled self-thermophoretic microswimmer with surface-attached gold nanoparticles (Fig. 1A and see the Supplementary Materials). For self-propulsion, the swimmer has to break the time symmetry of low Reynolds number hydrodynamics (33). This is achieved by an asymmetric illumination of the particle with laser light of 532-nm wavelength. It is absorbed by the gold nanoparticles and generates a temperature gradient along their surface, inducing thermo-osmotic surface flows and lastly resulting in a self-propulsion of the microswimmer suspended in water. The direction of propulsion is set by the vector pointing from the laser position to the center of the particle. The asymmetric illumination is maintained during the particle motion by following the swimmers position in real time and steering the heating laser (see the Methods section below). As compared with other types of swimmers (28, 34, 35), this symmetric swimmer removes the time scale of rotational diffusion from the swimmers motion and provides an enhanced steering accuracy (36, 37) (see the Supplementary Materials).

(A) Sketch of the self-thermophoretic symmetric microswimmer. The particles used have an average radius of r = 1.09 m and were covered on 30% of their surface with gold nanoparticles of about 10 nm diameter. A heating laser illuminates the colloid asymmetrically (at a distance d from the center), and the swimmer acquires a well-defined thermophoretic velocity v. (B) The gridworld contains 25 inner states (blue) with one goal at the top right corner (green). A set of 24 boundary states (red) is defined for the study of the noise influence. (C) In each of the states, we consider eight possible actions in which the particle is thermophoretically propelled along the indicated directions by positioning the laser focus accordingly. (D) The RL loop starts with measuring the position of the active particle and determining the state. For this state, a specific action is determined with the greedy procedure (see the Supplementary Materials for details). Afterward, a transition is made, the new state is determined, and a reward for the transition is given. On the basis of this reward, the Q-matrix is updated, and the procedure starts from step 1 until an episode ends by reaching the goal or exiting the gridworld to a boundary state.

To show RL with a real-world microscopic agent, we refer to the standard problem of RL, the gridworld. The gridworld problem allows us to have an experimental demonstration while being able to access the problem numerically. We coarse grain a sample region of 30 m by 30 m into a gridworld of 25 states (s, 5 5), each state having a dimension of 6 m by 6 m (Fig. 1B). One of the states is defined as the target state (goal), which the swimmer is learning to reach. The gridworld is surrounded by 24 boundary states according to Fig. 1B. The obtained real-time swimmer position is used to identify the state s in which the swimmer currently resides. To move between states, we define eight actions a. The actions are carried out by placing the heating laser at the corresponding position on the circumference of the particle (see Fig. 1C). A sequence of actions defines an episode in the gridworld, which ends when the swimmer either leaves the gridworld to a boundary state or reaches the target state. During an episode, rewards or penalties are given. Specifically, the microswimmer gets a reward once it reaches the target state and a penalty in other cases (see the Supplementary Materials for details on the reward definitions). The reward function R thus only depends on the state s, i.e., R = R(s).

We have implemented the model-free Q-learning algorithm to find the optimal policy that solves the navigation problem (38). The gained experience of the agent is stored in the Q-matrix (10), which tracks the utilities of the different actions a in each state s. When the swimmer transitions between two states s and s (see the Supplementary Materials for details on the choice of the next state), the Q-matrix is updated according toQt+t(s,a)=Qt(s,a)+[R(s)+maxaQt(s,a)Qt(s,a)](1)taking into account the reward R(s) of the next state, the utility of the next state Qt(s, a) after taking the best action a, and the current utility Qt(s, a). The influence of these values is controlled by two factors, the learning rate and the discount factor . The learning rate defines the fraction at which new information is incorporated into the Q-matrix, and the discount factor determines the value of future events into the learning process. The reward function is the only feedback signal that the system receives to figure out what it should learn. The result of this RL procedure is the optimal policy function *(s) a, which represents the learned knowledge of the system, *(s) = argmaxaQ(s, a), Q(s,a)=limtQt(s,a). Figure 1D highlights the experimental procedure of actuating the swimmer and updating the Q-matrix. As compared with computer models solving the gridworld with deterministic agents, there are four important differences to note. (i) The swimmer can occupy all positions within each state of 6 m by 6 m size. It can be arbitrarily close to the boundary. (ii) The swimmer moves in several steps through each state before making a transition. A swimmer velocity of v = 3 m s1 leads to a displacement of about 6 m within 2 s, corresponding to about 11 frames at an inverse frame rate texp = 180 ms until a transition to the next state is made. (iii) The new state after a transition does not have to be the state that was targeted by the actions. The microswimmers are subject to Brownian motion with a measured diffusion coefficient of D = 0.1 m2 s1. The trajectory is therefore partially nondeterministic. With this respect, the system we consider captures a very important feature of active matter on small length scales that is inherent to all microscopic biological systems, where active processes have been optimized to yield robust functions in a noisy background. (iv) Due to a time delay in the feedback loop controlling the active particles, the action applied to the swimmer is not determined from its present position but from its position in the past, which is a common feature for all living and nonliving responsive systems.

Figure 2 summarizes the learning process of our microswimmer for boundary states with R = 0 and a velocity of v = 3.0 m s1, v = r e /texp where r e is the mean projected displacement of the swimmer along the direction of the action e. Over the course of more than 5000 transitions (more than 400 episodes, about 7 hours of experiment), the sum of all Q-matrix entries converges (Fig. 2A). During this time, the mean number of transitions to reach the goal state decreases from about 600 transitions to less than 100 transitions (Fig. 2B). Accordingly, the trajectories of the swimmer become more deterministic, and the swimmer reaches the goal state independent of the initial state (Fig. 2C and inset). As a result of the learning process, the initial random policy is changing into a policy driving the swimmer toward the goal state. In this respect, the final policy provides an effective drift field with an absorbing boundary at the goal state (Fig. 2D). During this process, which correlates the actions of neighboring cells, the average projected velocity v causing the drift toward the goal also increases. Although the obtained policy is reflecting the best actions only, the Q-matrix shown in Fig. 2E provides the cumulative information that the swimmer obtained on the environment. It delivers, for example, also information on how much better the best action in a state has been as compared with the other possible actions. The representation in Fig. 2E encodes the Q-matrix value in the brightness of eight squares at the boundary of each state (center square has no meaning). Brighter colors thereby denote larger Q-matrix value.

(A) Learning progress for a single microswimmer in a gridworld at a velocity of v = 3.0 m s1. The progress is quantified by the sum of all Q-matrix elements at each transition of the learning process. The Q-matrix was initialized randomly. The shaded regions denote a set of 25 episodes in the learning process, where the starting point is randomly chosen. (B) Mean number of steps required to reach the target when starting at the lower left corner as the number of the learning episodes increases. (C) Different examples of the behavior of a single microswimmer at different stages of the learning process. The first example corresponds to a swimmer starting at the beginning of the learning process at an arbitrary position in the gridworld. The trajectory is characterized by a large number of loops. With an increasing number of learning episodes, the trajectories become more persistent in their motion toward the goal. This is also reflected by the decreasing average number of steps taken to reach the goal [see (B)]. The inset in the rightmost graph reveals trajectories from different starting positions. (D) Policies (s) = argmaxaQt(s, a) defined by the Q-matrix before (Qt(s, a) = Q0(s, a)) and after (Qt(s, a) = Q(s, a)) the convergence of the learning process. (E) Color representation of the initial and the final Q-matrix for the learning process. The small squares in each state represent the utility of the corresponding action (same order as in Fig. 1C) given by its Q-matrix entry, except for the central square. Darker colors show smaller utility, and brighter colors show a better utility of the corresponding action.

Because our gridworld is overlayed to the real-world sample, we may also define arbitrary obstacles by providing penalties in certain regions. Figure 3 (A and B) shows examples for trajectories and policies where the particles have been trained to reach a goal state close to a virtual obstacle. Similarly, real-world obstacles can be inserted into the sample to prevent the particle from accessing specific regions and thus realizing certain actions. More complex applications can involve the emergence of collective behavior, where the motion of multiple agents is controlled simultaneously (30). Different levels of collective and cooperative learning may be addressed (14, 39). A true collective learning is carried out when the swimmer is taking an action to maximize the reward of the collective, not only its individual one. Swimmers may also learn to act as a collective when positive rewards are given if an agent behaves like others in an ensemble (17). This mimics the process of developing swarming behavior implicated, for example, by the Vicsek model (40). Our control mechanism is capable of addressing multiple swimmers separately such that they may also cooperatively explore the environment. Instead of a true collective strategy, we are considering a low density of swimmers (number of swimmers number of states), which share the information gathered during the learning process by drawing their actions from and updating the same Q-matrix. The swimmers are exploring the same gridworld in different spatial regions, and thus, a speedup of the learning is expected. Figure 3C displays the trajectories of two particles sharing the same Q-matrix, which is updated in each learning step. As a result, the learning speed is enhanced (Fig. 3D). The proposed particle control therefore provides the possibility to explore a collective learning or the optimization of collective behavior and thus delivers an ideal model system with real physical interactions.

(A) Example trajectories for a learning process with a virtual obstacle (red square, R = 100) next to the goal state (R = 5) in the center of the gridworld. (B) Example trajectory for an active particle that has learned to reach a goal state (R = 5) behind a large virtual obstacle (red rectangle, R = 100). (C) Example trajectories for two particles sharing information during the learning process. The same rewards as in Fig. 2 have been used. (D) Sum of all Q-matrix elements at each transition comparing the learning speed with two particles sharing the information. In all the panels, the active particle speed during the learning process has been v = 3.0 m s1.

A notable difference between macroscopic agents, like robots, and microscopic active particles is the Brownian motion of microswimmers. There is an intrinsic positional noise present in the case of active particles, which is also of relevance for small living organisms like bacteria, cells, and all active processes on microscopic length scales. The advantage of the presented model system, however, is that the influence of the strength of the noise can be explored for the adaption process and the final behavior, whereas this is difficult to achieve in biological systems.

The importance of the noise in Brownian systems is commonly measured by the Peclet number, Pe = rv/2D, comparing the product of particle radius r and the deterministic particle displacement vt to the corresponding square displacements by Brownian motion 2Dt. To explore the influence of the noise strength, we change the speed of the active particle v, whereas the strength of the noise is given by the constant diffusion coefficient D. We further introduce a penalty in the boundary states R = 100 to modify the environment in a way that the influence of noise can introduce quantitative consequences for the transitions.

When varying the speed v between 2 and 5 m s1, we make four general observations. (i) Due to time delay in the feedback loop controlling the particles, the noise influence depends on the particle speed nonmonotonously (Fig. 4E and the Supplementary Materials). As a result, we find an optimal particle speed for which the noise is least important, as discussed in more detail in the following section. For the parameters used in the experiment, the optimal velocity is close to the maximum speed available. When increasing the speed in the limited interval of the experiment, the importance of the noise thus decreases. (ii) The Q-matrix converges considerably faster for higher particle speeds corresponding to a lower relative strength of the noise. This effect is intuitive because the stronger the noise, the lower the correlation between action and desired outcome. Figure 4A shows the convergence of the sum of the Q-matrix elements (summed over all entries for a given transition) for different microswimmer speeds (v = 2.8 m s1, v = 4.0 m s1, and v = 5.1 m s1). Although the sum reaches 50% after 250 transitions for the highest velocity, this requires almost 10 times more transitions at about half the speed. (iii) The resulting optimal policy depends on the noise strength. In Fig. 4B, we show the policies obtained for two different velocities (v = 1.6 m s1 and v = 4.6 m s1). Differences in the two policies are, in particular, visible in the states close to the boundary. Most of the actions at the top and right edge of the low-velocity policy point inward, whereas actions parallel to the edge are preferred at the higher velocity (see highlighted regions in Fig. 4, B and C). (iv) The contrast between the best action and the average of the other actions, which we take as a measure of the decision strength, is enhanced upon increasing importance of the noise. This contrast for a given state sk is measured byG(sk)=1{Q(sk,ab)Q(sk,ai)i}(2)where ab denotes the best action for the state and Q(sk,ai)i=i=18Q(sk,ai)/8. The result is normalized by a factor to make the largest contrast encoded in the color of the states in Fig. 4B equal to one.

(A) Sum of the Q-matrix elements as a function of the total number of transitions during the learning process. The different curves were obtained for learning with three different microswimmer speeds. (B) Policy obtained from learning processes at high noise (low velocity) (1 : v = 1.6 m s1) and low noise (high velocity) (2 : v = 4.6 m s1). The coloring of the states corresponds to the contrast between the value of the best action and the average of all other actions (Eq. 2). (C) Transition probabilities used in Bellmans Eq. 3 for diagonal and nondiagonal actions as determined from experiments with 500 trajectories for a velocity of 1.6 and 4.6 m s1. The blue lines indicate example experimental trajectories, which yield equivalent results for actions a2, a4, a5, a7 (top) and a1, a3, a6, a8 (bottom). The blue dots mark the first point outside the grid cell. The histograms to the right show the percentage arriving in the corresponding neighboring states. The numbers below denote the percentages for the two velocities (value in parentheses for higher velocity). (D) Origin of directional uncertainty. The green dots indicate the possible laser position due to the Brownian motion of the particle within the delay time t. The two graphs to the right display the experimental particle displacements of a single microswimmer within the delay time t = texp = 180 ms, when starting at the origin for two different particle velocities. (E) Variances of the point clouds in (D) parallel and perpendicular to the intended direction of motion. The dashed lines correspond to the theoretical prediction according to Eq. 4 for the perpendicular motion (2) and 2=2Dt+(cosh(2)1)v2t2 for the tangential motion with 20.23rad2, D = 0.1 m2 s1, and t = t = 180 ms. (F) Survival fraction of particles moving in the upper states at the boundary toward the goal state in policy 2 indicated in the inset. The survival has been determined from simulations for the same parameters as in (E).

Because the environment (gridworld with its rewards) stays constant for all learning processes at different velocities, all our above observations for varying particle speed are related to the importance of the noise strength. According to Bellmans equation (10)Q(s,a)=sP(ss,a)[R(s)+maxaQ(s,a)](3)

the influence of the noise on the learning process is encoded in the transition probabilities P(ss, a), i.e., the probabilities that an action a in the state s leads to a transition to the state s. This equation couples the element Q(s, a) of the optimized Q-matrix, corresponding to a state s and action a, with the discounted elements *(s)=maxaQ(s,a) of the optimal policy in the future states s and the corresponding future rewards R(s), weighted by transition probabilities P(sa, s). Using this equation, one can obtain the Q-matrix and the optimal policy by a Q-matrix value iteration procedure if the transition probabilities are known. The transition probabilities thus contain the physics of the motion of the active particle, including the noise, and decide how different penalties or rewards of the neighboring states influence the value of Q.

We have measured the transition function for the two types of transitions (diagonal and nondiagonal) using 500 trajectories in a single grid cell. To obtain the transition function, we set the starting position of all the trajectories to the center of the grid cell, carried out the specific action, and determined the state in which the particle trajectory ended up. The results are shown in Fig. 4C with exemplary trajectories and a histogram to the right. The numbers below the histograms show the corresponding transition probabilities to the neighboring state in percent for a velocity of v = 1.6 m s1 (v = 4.6 m s1 for the values in parentheses). The two velocities show only weak changes in the transition probabilities for the nondiagonal actions, which appear to be responsible for the changes in the policies in Fig. 4B. Carrying out a Q-matrix value iteration confirms the changes in the policy in the marked regions for the measured transition probability range (see the Supplementary Materials).

The advantage of our experimental system is that we can explore the detailed physical behavior of each microswimmer in dedicated experiments. To this end, we find two distinct influences of the Brownian motion as the only noise source on the microswimmers motion. Figure 4D shows the distribution of microswimmer displacement vectors within a time texp = 180 ms for two different velocities. Each displacement starts at the origin, and the point cloud reflects the corresponding end points of the displacement vectors. With increasing velocity, the particles increase their step length in the desired horizontal direction. The mean distance corresponds to the speed of the particle, and the end points are located close to a circle. At the same time, a directional uncertainty is observed where the angular variance 2 is nearly constant for all speeds (see the Supplementary Materials for details). This directional noise is the result of a delayed action in the experiments (30, 41), i.e., a time separation between sensing (imaging the position of the particle) and action on the particle position (placing the laser for propulsion). Both are separated by a delay time t, which is the intrinsic delay of the feedback loop (t = texp = 180 ms in our experiments). A delayed response is a very generic feature of all active responsive systems, including biological species. In the present case of a constant propulsion speed, it leads to an anisotropic noise. In the direction perpendicular to the intended action, the Brownian noise gets an additional component that is increasing nonlinearly with the particle speed, whereas the noise along the intended direction of motion is almost constant (Fig. 4E).

The increase in the variance perpendicular to the direction of motion can be analyzed with a simple model (see the Supplementary Materials for details), which yields2=v2tsinh(2)t+2Dt(4)and corresponds well with experimental data (Fig. 4E) for 20.23rad2 and fixed time t = t. In particular, it captures the nonlinear increase of 2 with the particle speed v.

The increase has important consequences. When considering the motion in the top four states of policy 2 (Fig. 4B), the particle would move horizontally toward the goal starting at an arbitrary position in the leftmost state. From all trajectories that started, only a fraction will arrive at the goal state before leaving these states through the upper, lower, or left boundaries of those four states. This survival fraction has been determined from simulations (also see the Supplementary Materials for an approximate theoretical description). Overall, a change between the two policies 1 and 2 is induced by an increase of the survival by less than 10% when going from v = 1.6 m s1 to v = 4.6 m s1. When further increasing the velocity, we find in simulations that an optimal velocity for maximum survival exists. This maximum corresponds to the minimumvopt=2Dsinh(2)t(5)in the variance (Eq. 4) for a fixed traveled distance a = vt, which only depends on the diffusion coefficient D, the angular variance 2, and the sensorial delay t (see the Supplementary Materials for details). In the limit of instantaneous actions (t = 0), an infinitely fast motion would yield the best results. Any nonzero delay will introduce a speed limit at which a maximum survival is ensured. We expect that the optimal policy for very high velocities should yield a similar policy as for low velocities. An experimental verification of this conjecture is currently out of reach, as Fig. 4F shows the results of the simulations.

The observed behavior of the survival probability, which exhibits a maximum for a certain particle velocity, implies that the probability to reach the target is maximal for the same optimal velocity. Moreover, because the underlying analysis is solely based on the competition of two noises omnipresent in (Brownian) active matter, namely the diffusion and the uncertainty in choosing the right direction, we conjecture that the observed type of behavior is universal. The precision of reaching the target (long time variance of the distance from the target) by the run-and-tumble motion of bacteria exhibits a minimum as a function of the run-and-tumble times (42, 43) reminiscent of our results. These results also demonstrate that the combination of machine learning algorithms with real-world microscopic agents can help to uncover physical phenomena (such as time delay in the present work), which play important roles in the microscopic motion of biological species.

Concluding, we have demonstrated RL with a self-thermophoretic microswimmer carrying out actions in a real-world environment with its information processing and sensing capabilities externalized to a computer and a microscopy setup. Already with this hybrid solution, one obtains a model system, where strategies in a noisy environment with virtual obstacles or collective learning can be explored. Although our simple realization of a gridworld is based on a global position detection defining the state of the swimmer, future applications will consider local information, e.g., the response to a temporal sequence of local physical or chemical signals, to allow for navigation in unknown environments. As compared with a computer simulation, our system contains a nonideal control limited by the finite reaction time of the feedback loop, presence of liquid flows, imperfections of the swimmers or sample container, hydrodynamic interactions, or other uncontrolled parameters that naturally influence the learning process. In this way, it resembles a new form of computer simulation using real-world agents. An important advantage is that the physics of the agent can be explored experimentally in detail to understand the learned strategies, and the real-world interactions in more complex environments can be used to adapt the microswimmers behavior. In that sense, even the inverse problem of using the learned strategy to reveal the details of these uncontrolled influences may be addressed as a new form of environmental sensing. Similarly, the control of active particles by machine learning algorithms may be used in evolutionary robotics (8, 44), where the interaction of multiple particles may be optimized to yield higher-order functional structures based on environmental interactions. Although the implementation of signaling and feedback by physical or chemical processes into a single artificial microswimmer is still a distant goal, the current hybrid solution opens a whole branch of new possibilities for understanding adaptive behavior of single microswimmers in noisy environments and the emergence of collective behavior of large ensembles of active systems.

Samples consisted of commercially available gold nanoparticlecoated melamine resin particles of a diameter of 2.19 m (microParticles GmbH, Berlin, Germany). The gold nanoparticles were covering about 30% of the surface area and were between 8 and 30 nm in diameter (see the Supplementary Materials for details.) Microscopy glass cover slides were dipped into a 5% Pluronic F127 solution, rinsed with deionized water, and dried with nitrogen. The Pluronic F127 coating prevented sticking of the particles to the glass cover slides. Two microliters of particle suspension was placed on the cover slides to spread about an area of 1 cm by 1 cm, forming a 3-m-thin water film. The edges of the sample were sealed with silicone oil (polydimethylsiloxane) to prevent water evaporation.

Samples were investigated in a custom-built inverted dark-field microscopy setup based on an Olympus IX-71 microscopy stand. The sample was held by a Piezo stage (Physik Instrumente) that was mounted on a custom-built stepper stage for coarse control. The sample was illuminated by a halogen lamp (Olympus) using a dark-field oil-immersion condenser [Olympus, numerical aperture (NA), 1.2]. The scattered light was collected by an oil-immersion objective lens (Olympus, 100, NA 1.35 to 0.6) with the NA set to 0.6 and captured with an Andor iXon emCCD camera. A = 532 nm laser was focused by the imaging objective into the sample plane to serve as a heating laser for the swimmers. Its position in the sample plane was steered by an acousto-optic deflector (AOD; AA Opto-Electronic) together with a 4-f system (two f = 20 cm lenses). The AOD was controlled by an ADwin realtime board (ADwin-Gold, Jger Messtechnik) exchanging data with a custom LabVIEW program. A region of interest of 512 pixels by 512 pixels (30 m by 30 m) was used for the real-time imaging, analysis, and recording of the particles, with an exposure time of texp = 180 ms. The details of integrating the RL procedure are contained in the Supplementary Materials.

robotics.sciencemag.org/cgi/content/full/6/52/eabd9285/DC1

Fig. S1. Symmetric swimmer structure.

Fig. S2. Swimmer speed as a function of laser power.

Fig. S3. Directional noise as function of the swimming velocity measured in the experiment.

Fig. S4. Directional noise model.

Fig. S5. Results of the analytical model of the influence of the noise.

Fig. S6. Q-matrix value iteration result.

Movie S1. Single-swimmer free navigation toward a target during learning.

Movie S2. Single-swimmer free navigation toward a target after learning.

Movie S3. Navigation toward a target with virtual obstacles.

Movie S4. Multiple-swimmer free navigation toward a target.

J. K. Parrish, W. M. Hamner, Animal Groups in Three Dimensions (Cambridge Univ. Press, 1997).

J. Kober, J. Peters, Reinforcement learning in robotics: A survey, in Learning Motor Skills (Springer Tracts in Advanced Robotics, 2014), vol. 97, pp. 967.

M. Wiering, M. v. Otterlo, Reinforcement Learning, in Adaptation, Learning, and Optimization (Springer Berlin Heidelberg, 2012), vol. 12.

R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press, 1998).

J. C. H. Watkins, thesis, Kings College, Cambridge (1989).

L. Busoniu, R. Babuka, B. De Schutter, Multi-agent reinforcement learning: A survey, in Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006) (Singapore, 2006), pp. 527532.

Acknowledgments: Helpful discussion with P. Romanczuk is acknowledged in pointing out observations of directional noise for biological systems. Fruitful discussion and help with extrapolating the theory to the experiments by K. Ghazi-Zahedi are acknowledged. We thank A. Kramer for helping to revise the manuscript. Funding: The authors acknowledge financial support by the DFG Priority Program 1726 Microswimmers through project 237143019. F.C. is supported by the DFG grant 432421051. V.H. is supported by a Humboldt grant of the Alexander von Humboldt Foundation and by the Czech Science Foundation (project no. 20-02955J). Author contributions: F.C. conceived the research. S.M.-L. and F.C. designed the experiments. S.M.-L. implemented the system, and S.M.-L. and A.F. performed the experiments. S.M.-L., V.H., and F.C. analyzed and discussed the data. F.C., V.H., and S.M.-L. wrote the manuscript. Competing interests: The authors declare that they have no competing financial interests. Data and materials availability: All data needed to evaluate the conclusions are available in the paper or in the Supplementary Materials. Additional data and materials are available upon request.

Read more here:

Reinforcement learning with artificial microswimmers - Science

Posted in Robotics | Comments Off on Reinforcement learning with artificial microswimmers – Science

Researchers Found a Way to Send Tiny Robots Into Mouse Brains – Gizmodo

Posted: at 2:47 am

Generations of laboratory mice like these recently became host to microscopic robot swarms.Photo: Getty Images (Getty Images)

In a mind-bending development, a team of researchers in China have managed to treat brain tumors in mice by delivering drugs to the tissues using microscopic robots. The robots jumped from the mices bloodstreams into their brains by being coated in E. coli, which tricked the rodents immune systems into attacking them, absorbing the robots and the cancer-fighting drugs in the process.

The teams research was published today in the journal Science Robotics. It comes on the heels of previous research by members of the same team, which saw liquid-coated nanorobots remotely propelled through the jelly-like fluid of the eye. Besides being an obvious recipe for an episode of The Magic School Bus, the research had obvious applications for ophthalmological research and medical treatments.

Its not just the blood-brain barrier, said lead author Zhiguang Wu, a chemist at the Harbin Institute for Technology in China, in an email. Most barriers in dense tissues are difficult obstacles to overcome in moving microrobots around a body.

The crafts are magnetic, and the researchers use a rotating magnetic field to pull them around remotely. On microscaleswere talking incremental movements about 1% the width of a hairthe researchers were able to make the hybrid bio-bots wend paths like in the video game Snake. Theyre dubbed neutrobotsbecause they infiltrate the brain in the casing of neutrophils, a type of white blood cell.

The biggest challenge of the work was how to achieve a swarm intelligence of neutrobots, Wu said. Like robot swarms in the macroscale world, the micro/nanorobot swarms enable sophisticated manipulation to accomplish complex tasks.

G/O Media may get a commission

It ultimately took Wus team eight years to actualize the microscopic robot swarms capable of bridging the gap between the rodent bloodstream in the animals tail, where the bots were injected, and its brain, where gliomastumors that emerge from the brains glial cellsresided. Part of the issue is that the mices white blood cells didnt dig the flavor of the magnetic robots. To overcome that issue, Wus team coated the bots in bits of E. coli membrane, which the white blood cells easily recognize as a unwelcome invader. That made the robots much more palatable, and the white blood cells enveloped them. From inside those cells, the robots were then able to roll the cells toward the brain; a Trojan horse for the 21st century (in this case, one that benefits the residents of Troy). The neutrobots made it into the brains and were able to deliver the drug directly to the targeted tumors.

Wu said the applications of the robots are manifold, and more breakthroughs could be on the horizon. The neutrobots are not exclusively designed for the treatment of glioma, he said, explaining that theyre a platform for active delivery for the therapy of various brain diseases such as cerebral thrombosis, apoplexy, and epilepsy.

Whether its surgery or drug delivery, robots are slowly but surely making their way into our most personal of domains. Of course, theyre still just in mouse brains for now, but future applications in humans seemincreasingly likely.

The use of neutrophils in microrobot design is a fascinating strategy for overcoming biological barriers, wrote robotic engineers Junsun Hwang and Hongsoo Choi, who werent affiliated with the new work, in an accompanying article. However, bench-to-bedside translation with respect to targeted drug delivery by neutrobots or microrobots is still some way off.

Currently, experts lack the ability to see what the robots are doing clearly in real time, which would be vital for any medical use of the droids down the line. But in the rat race of robotics research, its clear that humans are pushing their inanimate swarms in the direction of progress.

Continue reading here:

Researchers Found a Way to Send Tiny Robots Into Mouse Brains - Gizmodo

Posted in Robotics | Comments Off on Researchers Found a Way to Send Tiny Robots Into Mouse Brains – Gizmodo

Vaarst to drive the future of marine robotics through data focus – Sea News

Posted: at 2:47 am

Vaarst, a technology spin-off from leading subsea robotic and hydrographic survey company Rovco, was formally launched today with the goal of revolutionising the offshore robotics sector leveraging intelligent data flows for smart asset management and creating an energy-efficient and more sustainable future.

The business aims to accelerate advancement in ocean robotics, giving marine and subsea providers access to next-generation technology that will enable them to deliver AI-driven autonomous robotic work at scale.

Vaarst will target the energy and marine sectors through its innovative technologies, such as SubSLAM X2 an intelligent data collection system that delivers robotic spatial awareness and live 3D point clouds to any device in the world, without costly positioning systems, thereby saving many project days. This, combined with the companys machine learning and autonomy expertise will then provide the very best in efficient data collection and AI interpretation.

The new spinout company, Vaarst, is predicting immediate 2021 revenues over 1m rising to 20m+ rapidly in the next few years.

Vaarst CEO and Founder, Brian Allen, said, Autonomous robotics are the key to reducing the cost of offshore operations. At the same time, digitalisation of field assets is essential as the industry evolves, marrying these two concepts is needed to realise the real benefit of modern tech. Its the data that has to drive the vehicles. Vaarst is committed to unlocking the potential of offshore robotics for all.

Were tremendously excited about the future, and really delivering our customers digital and robotic ambitions, he added.

Vaarst will operate globally, with headquarters in Bristol, and has 29 employees with plans to grow to 70+ by end of 2022. The company is a technology spin-off of Rovco which was founded in 2015 and has invested heavily in real-time artificial intelligence-based 3D vision and autonomy systems. Future plans will see Vaarst take its offering to the wider industrial robotics global markets in sectors such as mining, construction, farming and land survey.

Sea News, March 25

Read the original here:

Vaarst to drive the future of marine robotics through data focus - Sea News

Posted in Robotics | Comments Off on Vaarst to drive the future of marine robotics through data focus – Sea News

University of Michigan and Ford establish AV and robotics development facility – Automotive Testing Technology International

Posted: at 2:47 am

The University of Michigan (U-M) and Ford Motor Company have opened a new facility dedicated to advancing robotics, autonomous vehicle technology and future mobility solutions.

U-Ms Ford Motor Company Robotics Building is a four-story, US$75m, 134,000ft2 complex situated on the north campus. As the new hub of the U-M Robotics Institute, its first three floors hold custom U-M research labs for robots that fly, walk, roll and augment the human body as well as classrooms, offices and makerspaces. Through a unique agreement, the fourth floor houses Fords first robotics and mobility research lab on a university campus, as well as 100 Ford researchers and engineers.

The new facility brings together U-M researchers from 23 different buildings and 10 top-10 programs. With the new infrastructure, researchers working on two-legged disaster response robots can test them on a 30mph treadmill studded with obstacles, or on a stair-stepped robot playground designed with the help of artificial intelligence. Biomedical engineers will have access to earthquake platforms with force-feedback plates to guide their development of lighter-weight, more efficient prosthetic legs. And Ford engineers will explore how their upright Digit robots can work in human spaceswhile taking AVs from robotic computer simulations to on-road testing at U-Ms world-class proving ground just down the road.

As Ford continues the most profound transformation in our history with electrification, connectivity and automation, advancing our collaboration with the University of Michigan will help us accelerate superior experiences for our customers while modernizing our business, said Ken Washington, chief technology officer, Ford Motor Company. We also will broaden our learning through daily exposure to many robotics activities, such as considering how our Digit robots not only technically can master delivering packages from autonomous vehicles but also become valued parts of our neighborhoods.

For Ford, the facility is key to the companys transformed and modernized research and product development processes aimed at disrupting the transportation landscape.

Key research will focus on:

Autonomous vehicles have the opportunity to change the future of transportation and the way we move, said Tony Lockwood, technical manager, Autonomous Vehicle Research, Ford Motor Company. As this new technology rolls out, having our Ford team working on campus collaborating with the academic world will help us shorten the time it takes to move research projects to automotive engineering, unlocking the potential of autonomous vehicles.

The Ford Robotics Building anchors the west end of the Michigan Avenue mobility testbed that begins in Detroits Corktown neighborhood and runs through Dearborn to Ann Arbor, where Ford and U-M are teaming with other innovators to experiment with potential mobility solutions for the future.

In collaboration with the state of Michigan and others, Ford and U-M are involved in developing this first-of-its-kind corridor for connected and autonomous vehicles that will continue the states mission to lead the development of smart infrastructure and future mobility. A key goal of the initiative is to close long-standing gaps in access to public transit and transportation across southeast Michigan.

See original here:

University of Michigan and Ford establish AV and robotics development facility - Automotive Testing Technology International

Posted in Robotics | Comments Off on University of Michigan and Ford establish AV and robotics development facility – Automotive Testing Technology International

Automated Chemistry Combines Chemical Robotics and AI to Accelerate Pace for Advancing Solar Energy Technologies – SciTechDaily

Posted: at 2:47 am

Researchers at ORNL and the University of Tennessee developed an automated workflow that combines chemical robotics and machine learning to speed the search for stable perovskites. Credit: Jaimee Janiga/ORNL, U.S. Dept of Energy

Researchers at the Department of Energys Oak Ridge National Laboratory and the University of Tennessee are automating the search for new materials to advance solar energy technologies.

A novel workflow published in ACS Energy Letters combines robotics and machine learning to study metal halide perovskites, or MHPs thin, lightweight, flexible materials with outstanding properties for harnessing light that can be used to make solar cells, energy-efficient lighting and sensors.

Our approach speeds exploration of perovskite materials, making it exponentially faster to synthesize and characterize many material compositions at once and identify areas of interest, said ORNLs Sergei Kalinin.

The study, part of an ORNL-UT Science Alliance collaboration, aims to identify the most stable MHP materials for device integration.

Automated experimentation can help us carve an efficient path forward in exploring what is an immense pool of potential material compositions, said UTs Mahshid Ahmadi.

Although MHPs are attractive for their high efficiency and low fabrication costs, their sensitivity to the environment limits operational use. Real-world examples tend to degrade too quickly in ambient conditions, such as light, humidity or heat, to be practical.

The enormous potential for perovskites presents an inherent obstacle for materials discovery. Scientists face a vast design space in their efforts to develop more robust models. More than a thousand MHPs have been predicted, and each of these can be chemically modified to generate a near limitless library of possible compositions.

It is difficult to overcome this challenge with conventional methods of synthesizing and characterizing samples one at a time, said Ahmadi. Our approach allows us to screen up to 96 samples at a time to accelerate materials discovery and optimization.

The team selected four model MHP systems yielding 380 compositions total to demonstrate the new workflow for solution-processable materials, compositions that begin as wet mixtures but dry to solid forms.

The synthesis step employed a programmable pipetting robot designed to work with standard 96-well microplates. The machine saves time over manually dispensing many different compositions; and it minimizes error in replicating a tedious process that needs to be performed in exactly the same ambient conditions, a variable that is difficult to control over extended periods.

Next, researchers exposed samples to air and measured their photoluminescent properties using a standard optical plate reader.

Its a simple measurement but is the de facto standard for characterizing stability in MHPs, said Kalinin. The key is that conventional approaches would be labor intensive, whereas we were able to measure the photoluminescent properties of 96 samples in about five minutes.

Repeating the process over several hours captured complex phase diagrams in which wavelengths of light vary across compositions and evolve over time.

The team developed a machine-learning algorithm to analyze the data and home in on regions with high stability.

Machine learning enables us to get more information out of sparse data by predicting properties between measured points, said ORNLs Maxim Ziatdinov, who led development of the algorithm. The results guide materials characterization by showing us where to look next.

While the study focuses on materials discovery to identify the most stable compositions, the workflow could also be used to optimize material properties for specific optoelectronic applications.

The automated process can be applied to any solution-processable material for time and cost savings over traditional synthesis methods.

Reference: Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning by Kate Higgins, Sai Mani Valleti, Maxim Ziatdinov, Sergei V. Kalinin and Mahshid Ahmadi, 15 October 2020, ACS Energy Letters.DOI: 10.1021/acsenergylett.0c01749

The research was supported by the Science Alliance, a Tennessee Center of Excellence, and the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

More here:

Automated Chemistry Combines Chemical Robotics and AI to Accelerate Pace for Advancing Solar Energy Technologies - SciTechDaily

Posted in Robotics | Comments Off on Automated Chemistry Combines Chemical Robotics and AI to Accelerate Pace for Advancing Solar Energy Technologies – SciTechDaily

Warehouse Robotics Market Worth $3902.5 Million by 2026 and Forecasted to Grow at CAGR 8% from 2020 to 2030 Comprehensive Report by Apex Market…

Posted: at 2:47 am

The global Warehouse Robotics market size is expected to gain market growth in the forecast period of 2020 to 2025, with a CAGR of 8.0% in the forecast period of 2020 to 2025 and will expected to reach USD 3902.5 million by 2025, from USD 2864.3 million in 2019.

Apex Market Research Has Added New Key Research Reports Covering The Global Warehouse Robotics Market. The study aims to provide global investors with a revolutionary decision-making tool covering the key fundamentals of the global Warehouse Robotics market. The research report will include the total global resources in the market with historical analysis, key figures including total revenue, total sales, key products and challenges. The report data is derived from extensive primary and secondary information sources with a detailed and reliable overview of the global Warehouse Robotics industry market. The research report relies on global regulatory bodies as primary sources of data, with independent forecast analysis and objective growth estimates.

A description of financial terms such as shares, cost, revenue and profit margin has been included in this Global Warehouse Robotics market document to better understand the different economic aspects of companies. This industry research report presents a viable insight for the key partners working on it. The report looks at various in-depth, influential, and driving factors that describe the market and industry. The Global Warehouse Robotics market report indicates that the global market is expected to expand significantly during the forecast period. The report has been prepared using primary and secondary research methodologies.

Get the Sample copy of Warehouse Robotics Market Research and Market Analysis @ https://www.apexmarketsresearch.com/report/warehouse-robotics-market-948339/#sample

The latest development trends and projected market forecasts that are likely to lead the current demand for products and the future state of this market are heavily involved. The basic focus of our report is to provide solutions to all questions related to the Global Warehouse Robotics market of the manufacturing market for future decision making. Additionally, to validate and speed up the data collection process, our analysts have used primary and secondary resources along with some of the real market analysis tools.

The following major key players:

Buy single user with discounted price now: https://www.apexmarketsresearch.com/checkout?reportId=948339&&usert=su

This report also provide In-depth studies of following point.

By Product Types segment on main Warehouse Robotics market:

By Application this report listed main Warehouse Robotics market:

Covid-19 Impact:

Global financial market is in crises as Covid-19 spreads all over the world. The coronavirus epidemic is relevant and has extensive effects for the market. Many industries are facing a rising number of critical concerns such as supply chain disruption, increasing risk of recession, and a possible reduction in consumer spending. The possible Warehouse Robotics market loss expected revenue, development scope with the help of new technologies are covered in a detailed manner.

Investigate objectives:

1. To study and analyze the global Warehouse Robotics market size by key areas / countries, product type and application, historical data.

2. Understand the structure of the global Warehouse Robotics market by identifying its various subsegments.

3. Focuses on the global global Warehouse Robotics key players, to define, describe and analyze the value, market share and development plans in the coming years.

4. Analyze the global Warehouse Robotics with respect to individual growth trends, future prospects, and its contribution to the total market.

5. Share detailed information on the key factors that influence market maturity.

6. To project the size of the Global Radio Integrated Circuit submarkets, with respect to key regions (along with their respective key countries).

7. Examine aggressive developments such as expansions, deals, new product launches, and market acquisitions.

8. Strategically profile key players and comprehensively review their growth plans.

Do You Have Any Query Or Specific Requirement? Ask to Our IndustryExpert @https://www.apexmarketsresearch.com/report/warehouse-robotics-market-948339/#inquiry

Reasons To Buy Global Warehouse Robotics Market Report:

1. Global Warehouse Robotics in Manufacturing market report includes accurate and up-to-date statistical data.

2. The report will provide an in-depth market analysis of the global Warehouse Robotics market in the manufacturing industry.

3. All the competitive market players in the global Warehouse Robotics market of the manufacturing industry are featured in the report.

4. Marketing strategies and market insights will help interested readers and investors boost their overall business.

5. The report will help in the decision-making method for the growth of energy in the growth of the market in the coming years.

Thinking one step ahead

In todays competitive world, you need to think one step ahead to track down your opponents, our research suggests reviews on key players, major collaborations, unions, and acquisitions along with trend changes and trade policies to present a better understanding to drive business forward. the right direction .

In conclusion, the Global Warehouse Robotics market report is a good source to access research data that is predicted to exponentially grow your business. The report provides insights such as economic situations, profits, limits, trends, market growth rates, and figures.

About Us:

We at Apex Market Research aim to be global leaders in qualitative and predictive analysis as we put ourselves in the front seat for identifying worldwide industrial trends and opportunities and mapping them out for you on a silver platter. We specialize in identifying the calibers of the markets robust activities and constantly pushing out the areas which allow our clientele base in making the most innovative, optimized, integrated and strategic business decisions in order to put them ahead of their competition by leaps and bounds. Our researchers achieve this mammoth of a task by conducting sound research through many data points scattered through carefully placed equatorial regions.

Contact Us:

Apex Market Research1st Floor, Harikrishna Building,Samarth Nagar, New Sanghvi,Pune- 411027 Indiatel: +91-8149441100 (GMT Office Hours)tel: +17738002974 [emailprotected]

The rest is here:

Warehouse Robotics Market Worth $3902.5 Million by 2026 and Forecasted to Grow at CAGR 8% from 2020 to 2030 Comprehensive Report by Apex Market...

Posted in Robotics | Comments Off on Warehouse Robotics Market Worth $3902.5 Million by 2026 and Forecasted to Grow at CAGR 8% from 2020 to 2030 Comprehensive Report by Apex Market…

If Robots Are the Future, Shouldn’t You Be Investing in Them? – ETF Trends

Posted: at 2:47 am

Artificial intelligence can already guess which ads consumers want to see on their mobile devices. Its just a sliver of whats in store with ETFs like the Global X Robotics & Artificial Intelligence Thematic ETF (BOTZ).

BOTZ seeks to invest in companies that stand to benefit from increased adoption and utilization of robotics and artificial intelligence (AI), including those involved with industrial robotics and automation, non-industrial robots, and autonomous vehicles.

See also:BOTZ vs. ROBO: Head-To-Head ETF Comparison

Additionally, BOTZ seeks to provide investment results that correspond generally to the price and yield performance, before fees and expenses, of the Indxx Global Robotics & Artificial Intelligence Thematic Index. The index itself captures large- and mid-cap representation across 23 Developed Markets (DM) and 24 Emerging Markets (EM) countries.

Fund benefits include:

According to a CNBC article, AIs capability will create so much wealth that every adult in the United States could be paid $13,500 per year from its windfall as soon as 10 years from now. This forecast was offered by Sam Altman, co-founder and president of San Francisco-headquartered, artificial intelligence-focused nonprofit OpenAI.

My work at OpenAI reminds me every day about the magnitude of the socioeconomic change that is coming sooner than most people believe, Altman posted. Software that can think and learn will do more and more of the work that people now do.

In the meantime, BOTZs top holding is showing just how strong investors believe in the growth potential of AI. ABB Ltd, which comprises about 8% of the funds allocation, is up almost 100% the past year.

For more news and information, visit the Thematic Investing Channel.

Read the original here:

If Robots Are the Future, Shouldn't You Be Investing in Them? - ETF Trends

Posted in Robotics | Comments Off on If Robots Are the Future, Shouldn’t You Be Investing in Them? – ETF Trends

Food Packaging Robotics Market- increasing demand with Industry Professionals: ABB, FANUC, Midea Group, Rethink Robotics, Universal Robots, etc KSU |…

Posted: at 2:47 am

Food-Packaging-Robotics-Market

Latest research on Global Food Packaging Robotics Market report covers forecast and analysis on a worldwide, regional and country level. The study provides historical information of 2016-2021 together with a forecast from 2021 to 2026 supported by both volume and revenue (USD million). The entire study covers the key drivers and restraints for the Food Packaging Robotics market. this report included a special section on the Impact of COVID19. Also, Food Packaging Robotics Market (By major Key Players, By Types, By Applications, and Leading Regions) Segments outlook, Business assessment, Competition scenario and Trends .The report also gives 360-degree overview of the competitive landscape of the industries.

Moreover, it offers highly accurate estimations on the CAGR, market share, and market size of key regions and countries. Players can use this study to explore untapped Food Packaging Robotics markets to extend their reach and create sales opportunities.

Some of the key manufacturers operating in this market include: ABB, FANUC, MideaGroup, RethinkRobotics, UniversalRobots, YASKAWAELECTRIC and More

Download Free PDF Sample Copy of the Report(with covid 19 Impact Analysis): https://www.globmarketreports.com/request-sample/86950

Our Research Analyst implemented a Free PDF Sample Report copy as per your Research Requirement, also including impact analysisofCOVID-19 on Food Packaging Robotics Market Size

Food Packaging Robotics market competitive landscape offers data information and details by companies. Its provides a complete analysis and precise statistics on revenue by the major players participants for the period 2021-2026. The report also illustrates minute details in the Food Packaging Robotics market governing micro and macroeconomic factors that seem to have a dominant and long-term impact, directing the course of popular trends in the global Food Packaging Robotics market.

Product Type Coverage (Market Size & Forecast, Major Company of Product Type etc.): AutomaticFoodPackagingRobotics Semi-AutomaticFoodPackagingRoboticsApplication Coverage (Market Size & Forecast, Different Demand Market by Region, Main Consumer Profile etc.): FoodIndustry BeverageIndustry Other

Regions Covered in the Global Food Packaging Robotics Market:1. South America Food Packaging Robotics Market Covers Colombia, Brazil, and Argentina.2. North America Food Packaging Robotics Market Covers Canada, United States, and Mexico.3. Europe Food Packaging Robotics Market Covers UK, France, Italy, Germany, and Russia.4. The Middle East and Africa Food Packaging Robotics Market Covers UAE, Saudi Arabia, Egypt, Nigeria, and South Africa.5. Asia Pacific Food Packaging Robotics Market Covers Korea, Japan, China, Southeast Asia, and India.Years Considered to Estimate the Market Size:History Year: 2015-2021Base Year: 2021Estimated Year: 2021Forecast Year: 2021-2026

Get Chance of up to 50% Extra [emailprotected]: https://www.globmarketreports.com/request-discount/86950

Reasons to buy:

Some Major TOC Points:

For More Information with including full TOC: https://www.globmarketreports.com/industry-reports/86950/Food-Packaging-Robotics-market

Key highlights of the Food Packaging Robotics Market report: Growth rate Renumeration prediction Consumption graph Market concentration ratio Secondary industry competitors Competitive structure Major restraints Market drivers Regional bifurcation Competitive hierarchy Current market tendencies Market concentration analysisCustomization of the Report: Glob Market Reports provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

Get Customization of the [emailprotected]: https://www.globmarketreports.com/request-customization/86950

Contact Us:Glob Market Reports17224 S. Figueroa Street,Gardena, California (CA) 90248,United StatesCall:+1 915 229 3004(U.S)+44 7452 242832(U.K)Website: http://www.globmarketreports.com

For More Reports Click Here:

1) http://marketsresearchreport.com/2021/03/02/modular-uninterruptible-power-supply-market-2021-global-industry-size-share-business-growth-revenueschneider-electric-huawei-abb-eaton-emerson-legrand-etc/2) http://marketsresearchreport.com/2021/03/02/commercial-combi-ovens-market-size-key-players-analysis-competitive-scenario-opportunities-development-status-2021-2026alto-shaam-middleby-retigo-henny-penny-itw-rational-etc/3) http://marketsresearchreport.com/2021/03/02/corporate-car-sharing-market-increasing-demand-with-industry-professionals-ubeeqo-ald-automotive-arval-sixt-fleetster-drivenow-etc/4) http://marketsresearchreport.com/2021/03/02/high-speed-doors-market-will-reflect-significant-growth-prospects-of-us-mn-during-2021-2026-with-major-key-player-hormann-rite-hite-asi-doors-rytec-assa-abloy-chase-doors-etc/5) http://marketsresearchreport.com/2021/03/02/special-mission-aircraft-market-increasing-demand-with-industry-professionals-boeing-company-bombardier-aerospace-lockheed-martin-corporation-northrop-grumman-corporation-etc/6) http://marketsresearchreport.com/2021/03/02/global-fruit-ripening-gas-market-to-witness-huge-gains-over-2021-2026saudi-basic-industries-corporation-dow-exxon-mobil-shell-sinopec-chevron-phillips-etc/

See original here:

Food Packaging Robotics Market- increasing demand with Industry Professionals: ABB, FANUC, Midea Group, Rethink Robotics, Universal Robots, etc KSU |...

Posted in Robotics | Comments Off on Food Packaging Robotics Market- increasing demand with Industry Professionals: ABB, FANUC, Midea Group, Rethink Robotics, Universal Robots, etc KSU |…

University partners with Thales, HEO Robotics on space research – News – The University of Sydney

Posted: at 2:47 am

The work under this research agreement will focus on the identification of sensor technologies that have the potential to perform well on in-orbit platforms in support of space domain awareness which is the study and monitoring of satellites orbiting earth as well as satellite docking and maintenance.

The new research project involves an initial scoping study phase, which, if successful, may lead to further developments.

The research project was funded by the SmartSat Cooperative Research Centre (CRC). It presents opportunities for new space projects that will flow from the SmartSat CRC initiative, contributing to the growth of a sovereign Australian space industry.

University of Sydney Dean of the Faculty of Engineering, Professor Willy Zwaenepoel said: This project represents an outstanding opportunity to engage with a global industry leader in the area of satellite systems, while also nurturing our domestic capability in Australia.

"It will engage our staff and students in the development of state-of-the-art satellite capabilities. Having recently been designated as the Academic Institution of the Year at the Australian Space Awards, the University of Sydney is in a unique position to deliver on the proposed project outcomes.

Thales Australia Director of Technical Strategy, Michael Clarke said the company has a long and proud history of partnering with academic and SMEs to develop next generation sovereign technologies.

This research project is no exception, and is another great example of demonstrating how collaboration will help grow sovereign space capability, while providing additional opportunities for SMEs to feed into our global projects, said Mr Clark.

HEO Robotics CEO, William Crowe said: HEO Robotics is an ambitious Australian space startup that is already supplying customers with insights using our HEO Inspect product. Were pleased to work with the likes of Thales Australia and the University of Sydney to supercharge our development and feed into the global supply chain of leading space companies.

See more here:

University partners with Thales, HEO Robotics on space research - News - The University of Sydney

Posted in Robotics | Comments Off on University partners with Thales, HEO Robotics on space research – News – The University of Sydney

Page 106«..1020..105106107108..120130..»