The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Category Archives: Quantum Computing
Quantum control’s role in scaling quantum computing – McKinsey
Posted: June 15, 2024 at 7:50 pm
June 14, 2024by Henning Soller and Niko Mohr with Elisa Becker-Foss, Kamalika Dutta, Martina Gschwendtner, Mena Issler, and Ming Xu
Quantum computing can leverage the states of entangled qubits1 to solve problems that classical computing cannot currently solve and to substantially improve existing solutions. These qubits, which are typically constructed from photons, atoms, or ions, can only be manipulated using specially engineered signals with precisely controlled energy that is barely above that of a vacuum and that changes within nanoseconds. This control system for qubits, referred to as quantum control, is a critical enabler of quantum computing because it ensures quantum algorithms perform with optimal efficiency and effectiveness.
While the performance and scaling limitations of current quantum control systems preclude large-scale quantum computing, several promising technological innovations may soon offer scalable control solutions.
A modern quantum computer comprises various hardware and software components, including quantum control components that require extensive space and span meters. In quantum systems, qubits interact with the environment, causing decoherence and decay of the encoded quantum information. Quantum gates (building blocks of quantum circuits) cannot be implemented perfectly at the physical system level, resulting in accumulated noise. Noise leads to decoherence, which lowers qubits superposition and entanglement properties. Quantum control minimizes the quantum noisefor example, thermal fluctuations and electromagnetic interferencecaused by the interaction between the quantum hardware and its surroundings. Quantum control also addresses noise by improving the physical isolation of qubits, using precise control techniques, and implementing quantum error correction codes. Control electronics use signals from the classical world to provide instructions for qubits, while readout electronics measure qubit states and transmit that information back to the classical world. Thus, the control layer in a quantum technology stack is often referred to as the interface between the quantum and classical worlds.
Components of the control layer include the following:
A superconducting- or spin qubitbased computer, for example, includes physical components such as quantum chips, cryogenics (cooling electronics), and control and readout electronics.
Quantum computing requires precise control of qubits and manipulation of physical systems. This control is achieved via signals generated by microwaves, lasers, and optical fields or other techniques that support the underlying qubit type. A tailored quantum control system is needed to achieve optimal algorithm performance.
In the context of a quantum computing stack, control typically refers to the hardware and software system that connects to the qubits the application software uses to solve real-world problems such as optimization and simulation (Exhibit 1).
At the top of the stack, software layers translate real-world problems into executable instructions for manipulating qubits. The software layer typically includes middleware (such as a quantum transpiler2) and control software comprising low-level system software that provides compilation, instrument control, signal generation, qubit calibration, and dynamical error suppression.3 Below the software layer is the hardware layer, where high-speed electronics and physical components work together to send signals to and read signals from qubits and to protect qubits from noise. This is the layer where quantum control instructions are executed.
Quantum control hardware systems are highly specialized to accommodate the intricacies of qubits. Control hardware interfaces directly with qubits, generating and reading out extremely weak and rapidly changing electromagnetic signals that interact with qubits. To keep qubits functioning for as long as possible, control hardware systems must be capable of adapting in real time to stabilize the qubit state (feedback calibration) and correct qubits from decaying to a completely decoherent state4 (quantum error correction).
Although all based on similar fundamental principles of quantum control, quantum control hardware can differ widely depending on the qubit technology with which it is designed to be used (Exhibit 2).
For example, photonic qubits operate at optical frequencies (similar to fiber internet), while superconducting qubits operate at microwave frequencies (similar to a fifth-generation network). Different types of hardware using laser technology or electronic circuits are needed to generate, manipulate, and transmit signals to and from these different qubit types. Additional hardware may be needed to provide environmental control. Cryostats, for example, cool superconducting qubits to keep them in a working state, and ion trap devices are used in trapped-ion qubit systems to confine ions using electromagnetic fields.
Quantum control is critical to enable fault-tolerant quantum computingquantum computing in which as many errors as possible are prevented or suppressed. But realizing this capability on a large scale will require substantial innovation. Existing control systems are designed for a small number of qubits (1 to 1,000) and rely on customized calibration and dedicated resources for each qubit. A fault-tolerant quantum computer, on the other hand, needs to control 100,000 to 1,000,000 qubits simultaneously. Consequently, a transformative approach to quantum control design is essential.
Specifically, to achieve fault-tolerant quantum computing on a large scale, there must be advances to address issues with current state-of-the-art quantum control system performance and scalability, as detailed below.
Equipping quantum systems to perform at large scales will require the following:
The limitations that physical space poses and the cost to power current quantum computing systems restrict the number of qubits that can be controlled with existing architecture, thus hindering large-scale computing.
Challenges to overcoming these restrictions include the following:
Several technologies show promise for scaling quantum control, although many are still in early-research or prototyping stages (Exhibit 3).
Multiplexing could help reduce costs and prevent overheating. The cryogenic complementary metal-oxide-semiconductor (cryo-CMOS) approach also helps mitigate overheating; it is the most widely used approach across industries because it is currently the most straightforward way to add control lines, and it works well in a small-scale R&D setup. However, cryo-CMOS is close to reaching the maximum number of control lines, creating form factor and efficiency challenges to scaling. Even with improvements, the number of control lines would only be reduced by a few orders of magnitude, which is not sufficient for scaling to millions of qubits. Another option to address overheating is single-flux quantum technology, while optical links for microwave qubits can increase efficiency in interconnections as well as connect qubits between cryostats.
Whether weighing options to supply quantum controls solutions or to invest in or integrate quantum technologies into companies in other sectors, leaders can better position their organizations for success by starting with a well-informed and strategically focused plan.
The first strategic decision leaders in the quantum control sector must make is whether to buy or build their solutions. While various levels of quantum control solutions can be sourced from vendors, few companies specialize in control, and full-stack solutions for quantum computing are largely unavailable. The prevailing expertise is that vendors can offer considerable advantages in jump-starting quantum computing operations, especially those with complex and large-scale systems. Nevertheless, a lack of industrial standardization means that switching between quantum control vendors could result in additional costs down the road. Consequently, many leading quantum computing players opt to build their own quantum control.
Ideally, business leaders also determine early on which parts of the quantum tech stack to focus their research capacities on and how to benchmark their technology. To develop capabilities and excel in quantum control, it is important to establish KPIs that are tailored to measure how effectively quantum control systems perform to achieve specific goals, such as improved qubit fidelity.5 This allows for the continuous optimization and refinement of quantum control techniques to improve overall system performance and scalability.
Quantum control is key to creating business value. Thus, the maturity and scalability of control solutions are the chief considerations for leaders exploring business development related to quantum computing, quantum solutions integration, and quantum technologies investment. In addition to scalability (the key criterion for control solutions), leaders will need to consider and address the other control technology challenges noted previously. And as control technologies mature from innovations to large-scale solutions, establishing metrics for benchmarking them will be essential to assess, for example, ease of integration, cost effectiveness, error-suppression effectiveness, software offerings, and the possibility of standardizing across qubit technologies.
Finally, given the shortage of quantum talent, recruiting and developing the highly specialized capabilities needed for each layer of the quantum stack is a top priority to ensure quantum control systems are properly developed and maintained.
Henning Soller is a partner in McKinseys Frankfurt office, and Niko Mohr is a partner in the Dsseldorf office. Elisa Becker-Foss is a consultant in the New York office, Kamalika Dutta is a consultant in the Berlin office, Martina Gschwendtner is a consultant in the Munich office, Mena Issler is an associate partner in the Bay Area office, and Ming Xu is a consultant in the Stamford office.
1 Entangled qubits are qubits that remain in a correlated state in which changes to one affect the other, even if they are separated by long distances. This property can enable massive performance boosts in information processing. 2 A quantum transpiler converts code from one quantum language to another while preserving and optimizing functionality to make algorithms and circuits portable between systems and devices. 3 Dynamical error suppression is one approach to suppressing quantum error and involves the periodic application of control pulse sequences to negate noise. 4 A qubit in a decoherent state is losing encoded quantum information (superposition and entanglement properties). 5 Qubit fidelity is a measure of the accuracy of a qubits state or the difference between its current state and the desired state.
Original post:
Quantum control's role in scaling quantum computing - McKinsey
Posted in Quantum Computing
Comments Off on Quantum control’s role in scaling quantum computing – McKinsey
Quantum Computing and AI: A Perfect Match? – InformationWeek
Posted: at 7:50 pm
It's a marriage that could only happen in cyberspace -- quantum computing and artificial intelligence.
Quantum AI is a burgeoning computer science sector, dedicated to exploring the potential synergy that exists between quantum computing and AI, says Gushu Li, a professor at the University of Pennsylvania School of Engineering and Applied Science, in an email interview. "It seeks to apply principles from quantum mechanics to enhance AI algorithms." A growing number of researchers now believe that AI models developed with quantum computing will soon outpace classical computing AI development.
Quantum AI creates an intersection between quantum computing and artificial intelligence, observes Romn Ors, chief scientific officer at quantum computing software development firm Multiverse Computing, via email. He notes that quantum computing has the potential to take AI to entirely new levels of performance. "For instance, it's possible to develop quantum neural networks that teach a quantum computer to detect anomalies, do image recognition, and other tasks." Ors adds that it's also possible to improve traditional AI methods by using quantum-inspired approaches to dramatically reduce the development and training costs of large language models (LLMs).
Related:Demystifying Quantum Computing: Separating Fact from Fiction
Combining the quantum physics properties of superposition and entanglement, which can perform limitless processes simultaneously with machine learning and AI, and suddenly it's possible to do more than ever imagined, says Tom Patterson, emerging technology security lead at business advisory firm Accenture, via email. "Unfortunately, that includes being used by adversaries to crack our encryption and develop new and insidious ways to separate us from our information, valuables, and anything else we hold dear."
Still, Patterson is generally optimistic. Like ChatGPT, he expects quantum AI to arrive gradually, and then all at once. "While full use of an AI-relevant quantum computer remains years away, the benefits of thinking about AI with quantum information science capabilities are exciting and important today," he states. "The opportunities are here and now, and the future is brighter than ever with quantum AI."
For his part, Li believes that quantum AI's biggest initial impact will be in four specific areas:
Drug Discovery: Simulating molecules to design new drugs and materials with superior properties.
Financial Modeling: Optimizing complex financial portfolios and uncovering hidden trends in the market.
Related:Cybersecurity's Future: Facing Post-Quantum Cryptography Peril
Materials Science: Developing new materials with specific properties for applications like superconductors or ultra-efficient solar cells.
Logistics and Optimization: Finding the most efficient routes for transportation and optimizing complex supply chains.
Quantum AI is already here, but it's a silent revolution, Ors says. "The first applications of quantum AI are finding commercial value, such as those related to LLMs, as well as in image recognition and prediction systems," he states. More quantum AI applications will become available as quantum computers grow more powerful. "It's expected that in two-to-three years there will be a broad range of industrial applications of quantum AI."
Yet the road ahead may be rocky, Li warns. "It's well known that quantum hardware suffers from noise that can destroy computation," he says. "Quantum error correction promises a potential solution, but that technology isn't yet available."
Meanwhile, while quantum AI algorithms are being developed, classical computing competitors are achieving new AI successes. "While progress is being made, it's prudent to acknowledge that the integration of quantum computing with AI is a complex endeavor that will unfold gradually," Li says.
Related:What Is the Future of AI-Driven Employee Monitoring?
Patterson notes that many of the most promising quantum AI breakthroughs aren't arriving from university and corporate research teams, but from various regional developer and support communities that closely mirror natural ecosystems. "Regions that have decided that quantum and AI are too big and too important to leave to one group or another have organized around providing everything progress demands -- from investment to science to academics to entrepreneurs, growth engines, and tier-one buyers," he says. "These regional ecosystems are where the magic happens with quantum AI."
GenAI and quantum computing are mind-blowing advances in computing technology, says Guy Harrison, enterprise architect at cybersecurity technology company OneSpan, in a recent email interview. "AI is a sophisticated software layer that emulates the very capabilities of human intelligence, while quantum computing is assembling the very building blocks of the universe to create a computing substrate," he explains. "We're pushing computing both into the realm of the mind and the realm of the sub-atomic."
The transition to quantum AI won't be optional, Ors warns, since current AI is fundamentally flawed due to excessive energy costs. New models and methods will be needed to lower energy demands and to make AI feasible in the long term. "Early adopters of quantum AI will get a competitive advantage and will survive, as opposed to those that do not adopt or adopt it too late."
See the original post:
Quantum Computing and AI: A Perfect Match? - InformationWeek
Posted in Quantum Computing
Comments Off on Quantum Computing and AI: A Perfect Match? – InformationWeek
Better Qubits: Quantum Breakthroughs Powered by Silicon Carbide – SciTechDaily
Posted: at 7:50 pm
By U.S. Department of Energy June 14, 2024
Artists representation of the formation pathway of vacancy complexes for spin-based qubits in the silicon carbide host lattice and to the right the associated energy landscape. Credit: University of Chicago
Quantum computers, leveraging the unique properties of qubits, outperform classical systems by simultaneously existing in multiple states. Focused research on silicon carbide aims to optimize qubits for scalable application, with studies revealing new methods to control and enhance their performance. This could lead to breakthroughs in large-scale quantum computing and sensor technologies.
While conventional computers use classical bits for calculations, quantum computers use quantum bits, or qubits, instead. While classical bits can have the values 0 or 1, qubits can exist in a mix of probabilities of both values at the same time. This makes quantum computing extremely powerful for problems conventional computers arent good at solving. To build large-scale quantum computers, researchers need to understand how to create and control materials that are suitable for industrial-scale manufacturing.
Semiconductors are very promising qubit materials. Semiconductors already make up the computer chips in cell phones, computers, medical equipment, and other applications. Certain types of atomic-scale defects, called vacancies, in the semiconductor silicon carbide (SiC) show promise as qubits. However, scientists have a limited understanding of how to generate and control these defects. By using a combination of atomic-level simulations, researchers were able to track how these vacancies form and behave.
Quantum computing could revolutionize our ability to answer challenging questions. Existing small scale quantum computers have given a glimpse of the technologys power. To build and deploy large-scale quantum computers, researchers need to know how to control qubits made of materials that make technical and economic sense for industry.
The research identified the stability and molecular pathways to create the desired vacancies for qubits and determine their electronic properties.
These advances will help the design and fabrication of spin-based qubits with atomic precision in semiconductor materials, ultimately accelerating the development of next-generation large-scale quantum computers and quantum sensors.
The next technological revolution in quantum information science requires researchers to deploy large-scale quantum computers that ideally can operate at room temperature. The realization and control of qubits in industrially relevant materials is key to achieving this goal.
In the work reported here, researchers studied qubits built from vacancies in silicon carbide (SiC) using various theoretical methods. Until now, researchers knew little about how to control and engineer the selective formation process for the vacancies. The involved barrier energies for vacancy migration and combination pose the most difficult challenges for theory and simulations.
In this study, a combination of state-of-the-art materials simulations and neural-network-based sampling technique led researchers at the Department of Energys (DOE) Midwest Center for Computational Materials (MICCoM) to discover the atomistic generation mechanism of qubits from spin defects in a wide-bandgap semiconductor.
The team showed the generation mechanism of qubits in SiC, a promising semiconductor with long qubit coherence times and all-optical spin initialization and read-out capabilities.
MICCoM is one of the DOE Computational Materials Sciences centers across the country that develops open-source, advanced software tools to help the scientific community model, simulate, and predict the fundamental properties and behavior of functional materials. The researchers involved in this study are from Argonne National Laboratory and the University of Chicago.
Reference: Stability and molecular pathways to the formation of spin defects in silicon carbide by Elizabeth M. Y. Lee, Alvin Yu, Juan J. de Pablo and Giulia Galli, 3 November 2021,Nature Communications. DOI: 10.1038/s41467-021-26419-0
This work was supported by the Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and is part of the Basic Energy Sciences Computational Materials Sciences Program in Theoretical Condensed Matter Physics. The computationally demanding simulations used several high-performance computing resources: Bebop in Argonne National Laboratorys Laboratory Computing Resource Center; the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science user facility; and the University of Chicagos Research Computing Center. The team was awarded access to ALCF computing resources through DOEs Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. Additional support was provided by NIH.
Read more from the original source:
Better Qubits: Quantum Breakthroughs Powered by Silicon Carbide - SciTechDaily
Posted in Quantum Computing
Comments Off on Better Qubits: Quantum Breakthroughs Powered by Silicon Carbide – SciTechDaily
Diraq is Partnering with GlobalFoundries for Integrated CMOS/Qubits Logic on the Same Chip and Achieves Record Spin Qubit Gate Fidelities at 1 Kelvin…
Posted: at 7:50 pm
Diraq is Partnering with GlobalFoundries for Integrated CMOS/Qubits Logic on the Same Chip and Achieves Record Spin Qubit Gate Fidelities at 1 Kelvin for Test Chips Fabricated at Imec. Quantum Computing Report
The rest is here:
Posted in Quantum Computing
Comments Off on Diraq is Partnering with GlobalFoundries for Integrated CMOS/Qubits Logic on the Same Chip and Achieves Record Spin Qubit Gate Fidelities at 1 Kelvin…
Quantum, AI Combine to Transform Energy Generation, AI Summit London – AI Business
Posted: at 7:50 pm
The electrical grid is very complicated. Nobody thinks about it ever until it doesn't work. But it is critical infrastructure that runs minute-to-minute energy being consumed now was generated milliseconds ago, somewhere far away, instantaneously shot through power lines and delivered.
This gets more complicated when locally generated sustainable energy joins the mix, pushing it beyond the capabilities of classical computing solutions. Home energy supplier E.ON is trialing quantum computer solutions to manage this future grid.
Speaking at the AI Summit London, E.ON chief quantum scientist Corey OMeara explained the challenges presented by future decentralized grids.
The way grids are changing now is, if buildings have solar panels on the roofs, you want to use that renewable energy yourself, or you might want to inject that back into the grid to power your neighbor's house, he said.
This decentralized energy production and peer-to-peer energy-sharing model presents a massive overhead for an aging grid that was never meant to be digital. E.ON is working on solving this renewable energy integration optimization problem using quantum computing.
E.ON also uses AI extensively and some functions could in the future be enhanced using quantum computing. An important example is AI-driven predictive maintenance for power plants.
Related:Unilever's Alberto Prado on Quantum Computing's Future, Impact on Emerging Tech
Power plants are complex objects that have thousands of sensors that measure and monitor factors such as temperatures and pressures and store the data in the cloud. We have AI solutions to analyze them to make sure that they're functioning correctly, said OMeara.
We published a paper where we invented a novel anomaly detection algorithm using quantum computing as a subroutine. We used it with our gas turbine data as well as academic benchmark data sets from the computer science field and found that the quantum-augmented solution did perform better but only for certain metrics.
E.ON plans to develop this trial into an integrated quantum software solution that could run on today's noisy, intermediate-scale quantum computers rather than waiting for next-generation fully error-corrected devices.
See the article here:
Quantum, AI Combine to Transform Energy Generation, AI Summit London - AI Business
Posted in Quantum Computing
Comments Off on Quantum, AI Combine to Transform Energy Generation, AI Summit London – AI Business
New technique could help build quantum computers of the future – EurekAlert
Posted: at 7:50 pm
image:
Kaushalya Jhuria in the lab testing the electronics from the experimental setup used to make qubits in silicon.
Credit: Thor Swift/Berkeley Lab
Quantum computers have the potential to solve complex problems in human health, drug discovery, and artificial intelligence millions of times faster than some of the worlds fastest supercomputers. A network of quantum computers could advance these discoveries even faster. But before that can happen, the computer industry will need a reliable way to string together billions of qubits or quantum bits with atomic precision.
Connecting qubits, however, has been challenging for the research community. Some methods form qubits by placing an entire silicon wafer in a rapid annealing oven at very high temperatures. With these methods, qubits randomly form from defects (also known as color centers or quantum emitters) in silicons crystal lattice. And without knowing exactly where qubits are located in a material, a quantum computer of connected qubits will be difficult to realize.
But now, getting qubits to connect may soon be possible. A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) says that they are the first to use a femtosecond laser to create and annihilate qubits on demand, and with precision, by doping silicon with hydrogen.
The advance could enable quantum computers that use programmable optical qubits or spin-photon qubits to connect quantum nodes across a remote network. It could also advance a quantum internet that is not only more secure but could also transmit more data than current optical-fiber information technologies.
To make a scalable quantum architecture or network, we need qubits that can reliably form on-demand, at desired locations, so that we know where the qubit is located in a material. And that's why our approach is critical, said Kaushalya Jhuria, a postdoctoral scholar in Berkeley Labs Accelerator Technology & Applied Physics (ATAP) Division. She is the first author on a new study that describes the technique in the journal Nature Communications. Because once we know where a specific qubit is sitting, we can determine how to connect this qubit with other components in the system and make a quantum network.
This could carve out a potential new pathway for industry to overcome challenges in qubit fabrication and quality control, said principal investigator Thomas Schenkel, head of the Fusion Science & Ion Beam Technology Program in Berkeley Labs ATAP Division. His group will host the first cohort of students from the University of Hawaii in June as part of a DOE Fusion Energy Sciences-funded RENEW project on workforce development where students will be immersed in color center/qubit science and technology.
Forming qubits in silicon with programmable control
The new method uses a gas environment to form programmable defects called color centers in silicon. These color centers are candidates for special telecommunications qubits or spin photon qubits. The method also uses an ultrafast femtosecond laser to anneal silicon with pinpoint precision where those qubits should precisely form. A femtosecond laser delivers very short pulses of energy within a quadrillionth of a second to a focused target the size of a speck of dust.
Spin photon qubits emit photons that can carry information encoded in electron spin across long distances ideal properties to support a secure quantum network. Qubits are the smallest components of a quantum information system that encodes data in three different states: 1, 0, or a superposition that is everything between 1 and 0.
With help from Boubacar Kant, a faculty scientist in Berkeley Labs Materials Sciences Division and professor of electrical engineering and computer sciences (EECS) at UC Berkeley, the team used a near-infrared detector to characterize the resulting color centers by probing their optical (photoluminescence) signals.
What they uncovered surprised them: a quantum emitter called the Ci center. Owing to its simple structure, stability at room temperature, and promising spin properties, the Ci center is an interesting spin photon qubit candidate that emits photons in the telecom band. We knew from the literature that Ci can be formed in silicon, but we didnt expect to actually make this new spin photon qubit candidate with our approach, Jhuria said.
The researchers learned that processing silicon with a low femtosecond laser intensity in the presence of hydrogen helped to create the Ci color centers. Further experiments showed that increasing the laser intensity can increase the mobility of hydrogen, which passivates undesirable color centers without damaging the silicon lattice, Schenkel explained.
A theoretical analysis performed by Liang Tan, staff scientist in Berkeley Labs Molecular Foundry, shows that the brightness of the Ci color center is boosted by several orders of magnitude in the presence of hydrogen, confirming their observations from laboratory experiments.
The femtosecond laser pulses can kick out hydrogen atoms or bring them back, allowing the programmable formation of desired optical qubits in precise locations, Jhuria said.
The team plans to use the technique to integrate optical qubits in quantum devices such as reflective cavities and waveguides, and to discover new spin photon qubit candidates with properties optimized for selected applications.
Now that we can reliably make color centers, we want to get different qubits to talk to each other which is an embodiment of quantum entanglement and see which ones perform the best. This is just the beginning, said Jhuria.
The ability to form qubits at programmable locations in a material like silicon that is available at scale is an exciting step towards practical quantum networking and computing, said Cameron Geddes, Director of the ATAP Division.
Theoretical analysis for the study was performed at the Department of EnergysNational Energy Research Scientific Computing Center (NERSC) at Berkeley Lab with support from the NERSC QIS@Perlmutterprogram.
The Molecular Foundry and NERSC are DOE Office of Science user facilities at Berkeley Lab.
This work was supported by the DOE Office of Fusion Energy Sciences.
###
Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to delivering solutions for humankind through research in clean energy, a healthy planet, and discovery science. Founded in 1931 on the belief that the biggest problems are best addressed by teams, Berkeley Lab and its scientists have been recognized with 16 Nobel Prizes. Researchers from around the world rely on the Labs world-class scientific facilities for their own pioneering research. Berkeley Lab is a multiprogram national laboratory managed by the University of California for the U.S. Department of Energys Office of Science.
DOEs Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visitenergy.gov/science.
Nature Communications
Experimental study
Not applicable
Programmable quantum emitter formation in silicon
27-May-2024
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
Read this article:
New technique could help build quantum computers of the future - EurekAlert
Posted in Quantum Computing
Comments Off on New technique could help build quantum computers of the future – EurekAlert
Vortex Power: The Swirl of Light Revolutionizing Quantum Computing – SciTechDaily
Posted: June 13, 2024 at 4:37 pm
A novel vortex phenomenon involving photon interactions was identified by scientists, potentially enhancing quantum computing. Through experiments with dense rubidium gas, they observed unique phase shifts that mimic other vortices but are distinct in their quantum implications. Credit: SciTechDaily.com
Researchers at the Weizmann Institute of Science discovered a new type of vortex formed by photon interactions, which could advance quantum computing.
Vortices are a widespread natural phenomenon, observable in the swirling formations of galaxies, tornadoes, and hurricanes, as well as in simpler settings like a stirring cup of tea or the water spiraling down a bathtub drain. Typically, vortices arise when a rapidly moving substance such as air or water meets a slower-moving area, creating a circular motion around a fixed axis. Essentially, vortices serve to reconcile the differences in flow speeds between adjoining regions.
A vortex ring and lines created by the influence of three photons on one another. The color describes the phase of the electric field, which completes a 360-degree rotation around the vortex core. Credit: Weizmann Institute of Science
A previously unknown type of vortex has now been discovered in a study, published in Science, conducted by Dr. Lee Drori, Dr. Bankim Chandra Das, Tomer Danino Zohar, and Dr. Gal Winer from Prof. Ofer Firstenbergs laboratory at the Weizmann Institute of Sciences Physics of Complex Systems Department. The researchers set out to look for an efficient way of using photons to process data in quantum computers and found something unexpected: They realized that in the rare event that two photons interact, they create vortices. Not only does this discovery add to the fundamental understanding of vortices, it may ultimately contribute to the studys original goal of improving data processing in quantum computing.
The interaction between photons light particles that also behave like waves is only possible in the presence of matter that serves as an intermediary. In their experiment, the researchers forced photons to interact by creating a unique environment: a 10-centimeter glass cell that was completely empty, save for rubidium atoms that were so tightly packed in the center of the container that they formed a small, dense gas cloud about 1 millimeter long. The researchers fired more and more photons through this cloud, examined their state after they had passed through it, and looked to see if they had influenced one another in any way.
When the gas cloud was at its densest and the photons were close to each other, they exerted the highest level of mutual influence.
When the photons pass through the dense gas cloud, they send a number of atoms into electronically excited states known as Rydberg states, Firstenberg explains. In these states, one of the electrons in the atom starts moving in an orbit that is 1,000 times wider than the diameter of an unexcited atom. This electron creates an electric field that influences a huge number of adjacent atoms, turning them into a kind of imaginary glass ball.
The image of a glass ball reflects the fact that the second photon present in the area cannot ignore the environment the first photon has created and, in response, it alters its speed as if it has passed through glass. So, when two photons pass relatively close to each other, they move at a different speed than they would have if each had been traveling alone. And when the speed of the photon changes, so does the position of the peaks and valleys of the wave it carries. In the optimal case for the use of photons in quantum computing, the positions of the peaks and valleys become completely inverted relative to one another, owing to the influence the photons have on each other a phenomenon known as a 180-degree phase shift.
From bottom left, clockwise: Dr. Lee Drori, Tomer Danino Zohar, Dr. Alexander Poddubny, Prof. Ofer Firstenberg, Dr. Gal Winer, Dr. Eilon Poem and Dr. Bankim Chandra Das. Credit: Weizmann Institute of Science
The direction that the research took was as unique and extraordinary as the paths of the photons in the gas cloud. The study, which also included Dr. Eilon Poem and Dr. Alexander Poddubny, began eight years ago and has seen two generations of doctoral students pass through Firstenbergs laboratory.
Over time, the Weizmann scientists managed to create a dense, ultracold gas cloud, packed with atoms. As a result, they achieved something unprecedented: photons that underwent a phase shift of 180-degrees and sometimes more. When the gas cloud was at its densest and the photons were close to each other, they exerted the highest level of mutual influence. But when the photons moved away from each other or the atomic density around them dropped, the phase shift weakened and disappeared.
The prevalent assumption was that this weakening would be a gradual process, but researchers were in for a surprise: A pair of vortices developed when two photons were a certain distance apart. In each of these vortices, the photons completed a 360-degree phase shift and, at their center there were almost no photons at all just as in the dark center we know from other vortices.
The scientists found that the presence of a single photon affected 50,000 atoms, which in turn influenced the motion of a second photon.
To understand photon vortices, think of what happens when you drag a vertically held plate through the water. The rapid movement of the water pushed by the plate meets the slower movement around it. This creates two vortices that, when viewed from above, appear to be moving together along the waters surface, but in fact, they are part of a three-dimensional configuration known as a vortex ring: The submerged part of the plate creates half a ring, which connects the two vortices visible on the surface, forcing them to move together.
Another familiar instance of vortex rings is smoke rings. In the last stages of the study, the researchers observed this phenomenon when they introduced a third photon, which added an extra dimension to the findings: The scientists discovered that the two vortices observed when measuring two photons are part of a three-dimensional vortex ring generated by the mutual influence of the three photons. These findings demonstrate just how similar the newly discovered vortices are to those known from other environments.
The vortices may have stolen the show in this study, but the researchers are continuing to work toward their goal of quantum data processing. The next stage of the study will be to fire the photons into each other and measure the phase shift of each photon separately. Depending on the strength of the phase shifts, the photons could be used as qubits the basic units of information in quantum computing. Unlike the units of regular computer memory, which can either be 0 or 1, quantum bits can represent a range of values between 0 and 1 simultaneously.
Reference: Quantum vortices of strongly interacting photons by Lee Drori, Bankim Chandra Das, Tomer Danino Zohar, Gal Winer, Eilon Poem, Alexander Poddubny and Ofer Firstenberg, 13 July 2023,Science. DOI: 10.1126/science.adh5315
Prof. Ofer Firstenbergs research is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Shimon and Golde Picker Weizmann Annual Grant and the Laboratory in Memory of Leon and Blacky Broder, Switzerland.
View original post here:
Vortex Power: The Swirl of Light Revolutionizing Quantum Computing - SciTechDaily
Posted in Quantum Computing
Comments Off on Vortex Power: The Swirl of Light Revolutionizing Quantum Computing – SciTechDaily
Unlock Generous Growth With These 3 Top Quantum Computing Stocks – InvestorPlace
Posted: at 4:37 pm
While the technology offers myriad innovations, investors ought to earmark the top quantum computing stocks for the speculative long-term section of their portfolio. Fundamentally, it all comes down to the projected relevance.
According to Grand View Research, the global quantum computing market size reached a valuation of $1.05 billion in 2022. Experts project that the sector could expand at a compound annual growth rate (CAGR) of 19.6% from 2023 to 2030. At the culmination of the forecast period, the segment could print revenue of $4.24 billion.
Better yet, we might be in the early stages. Per McKinsey & Company, quantum technology itself could lead to value creation worth trillions of dollars. Essentially, quantum computers represent a paradigm shift from the classical approach. These devices can generate myriad functions simultaneously, leading to explosive growth in productivity.
Granted, with every pioneering space comes high risks. If youre willing to accept the heat, these are the top quantum computing stocks to consider.
Source: Boykov / Shutterstock.com
To be sure, Honeywell (NASDAQ:HON) isnt exactly what you would call a direct player among top quantum computing stocks. Rather, the company is an industrial and applied sciences conglomerate, featuring acumen across myriad disciplines. However, Honeywell is very much relevant to the advanced computing world thanks to its investment in Quantinuum.
Earlier this year, Honeywells quantum computing enterprise reached a valuation of $5 billion following a $300 million equity funding round, per Reuters. Notably, JPMorgan Chase (NYSE:JPM) helped anchor the investment. According to the news agency, [c]ompanies are exploring ways to develop and scale quantum capabilities to solve complex problems such as designing and manufacturing hydrogen cell batteries for transportation.
Honeywell could play a big role in the applied capabilities of quantum computing, making it a worthwhile long-term investment. To be fair, its not the most exciting play in the world. Analysts rate shares a consensus moderate buy but with an average price target of $229.21. That implies about 10% upside.
Still, Honeywell isnt likely to implode either. As you build your portfolio of top quantum computing stocks, it may pay to have a reliable anchor like HON.
Source: Amin Van / Shutterstock.com
Getting into the more exciting plays among top quantum computing stocks, we have IonQ (NYSE:IONQ). Based in College Park, Maryland, IonQ mainly falls under the computer hardware space. Per its public profile, the company engages in the development of general-purpose quantum computing systems. Business-wise, IonQ sells access to quantum computers of various qubit capacities.
Analysts are quite optimistic about IONQ stock, rating shares a consensus strong buy. Further, the average price target comes in at $16.63, implying over 109% upside potential. Thats not all the most optimistic target calls for a price per share of $21. If so, we would be talking about a return of over 164%. Of course, with a relatively modest market capitalization of $1.68 billion, IONQ is a high-risk entity.
Even with the concerns, including an expansion of red ink for fiscal 2024, covering experts believe the growth narrative could overcome the anxieties. In particular, theyre targeting revenue of $39.47 million, implying 79.1% upside from last years print of $22.04 million. Whats more, fiscal 2025 sales could see a gargantuan leap to $82.38 million. Its one of the top quantum computing stocks to keep on your radar.
Source: Shutterstock
Headquartered in Berkeley, California, Rigetti Computing (NASDAQ:RGTI) through its subsidiaries builds quantum computers and superconducting quantum processors. In particular, Rigetti offers a cloud-based solution under a quantum processing umbrella. It also sells access to its groundbreaking computers through a business model called Quantum Computing as a Service.
While intriguing, RGTI stock is high risk. The reality is that the enterprise features a market cap of a little over $175 million. That translates to a per-share price of two pennies over a buck. With such a diminutive profile, anything can happen. Still, its tempting because analysts rate shares a unanimous strong buy. Also, the average price target lands at $3, implying over 194% upside potential.
Whats even more enticing are the financial projections. Covering experts believe that Rigetti will post a loss per share of 41 cents. Thats an improvement over last years loss of 57 cents. Further, revenue could hit $15.3 million, up 27.4% from the prior year. And in fiscal 2025, sales could soar to $28.89 million, up nearly 89% from projected 2024 revenue.
If you can handle the heat, RGTI is one of the top quantum computing stocks to consider.
On the date of publication, Josh Enomoto did not have (either directly or indirectly) any positions in the securities mentioned in this article.The opinions expressed in this article are those of the writer, subject to the InvestorPlace.comPublishing Guidelines.
A former senior business analyst for Sony Electronics, Josh Enomoto has helped broker major contracts with Fortune Global 500 companies. Over the past several years, he has delivered unique, critical insights for the investment markets, as well as various other industries including legal, construction management, and healthcare. Tweet him at @EnomotoMedia.
Here is the original post:
Unlock Generous Growth With These 3 Top Quantum Computing Stocks - InvestorPlace
Posted in Quantum Computing
Comments Off on Unlock Generous Growth With These 3 Top Quantum Computing Stocks – InvestorPlace
3 Quantum Computing Stocks That Still Have Sky-High Potential – InvestorPlace
Posted: at 4:37 pm
Quantum computing will be a game-changer and could create big opportunities for some of the top quantum computing stocks.
In fact, according to McKinsey, it could take computing and the ability to solve complex problems quickly to a whole new level. They also believe it could create a $1.3 trillion opportunity by the time 2035 rolls around.
Quantum computing is a huge leap forward because complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds, said Charlie Campbell forTime.This could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security.
It couldhelp speed up new drug treatment discoveries. It may even help speed up financing and data speed, assist with climate change issues, cybersecurity and other mind-boggling complex issues faster than a regular computer.
Even more impressive, the technology is already beingreferred to as a revolution for humanity bigger than fire, bigger than the wheel, according toHaim Israel, Head of Thematic Investing Research atBank of America.
All of which could fuel big upside for quantum computing stocks.
Source: Amin Van / Shutterstock.com
Consolidating at $7.87, Id like to see shares of IonQ (NYSE:IONQ) initially run back to $10 a share.
For one, earnings have been ok.The company just posted a first-quarter loss of 19 cents, which beat expectations by six cents. Revenue of $7.6 million up 77.2% year over year beat by $600,000. Also, for the full year, revenue is expected to be between $37 million and $41 million, with estimates calling for $39.99 million.
Two, the company is quickly gaining more U.S. defense, technology and university clients. It also expects to increase its computing power from AQ 36 (a tool used to show how useful a quantum computer is at solving real problems) to AQ 64 by 2025.
Three, whats really enticing about IONQ is that were still in the early stages of growth. When quantum computing does become far bigger than it is now, it could propel this $1.74 billion company to higher highs.
Source: Bartlomiej K. Wroblewski / Shutterstock.com
Another one of the top quantum computing stocks to buy isD-Wave Quantum(NYSE:QBTS), which claims to be the worlds first commercial supplier of quantum computers.
At the moment, QBTS is sitting at double-bottom support at $1.16. From here, Id like to see it initially run to about $1.70. Then, once the quantum computing story really starts to heat up, Id like to see the stock run back to $3.20 from its current price.
Helping, QBTS has a consensus strong buy rating from four analysts, with an average price target of $3. And, the stock is set to join theRussell 3000 Index on July 1, which will give it even more exposure to investors. In addition, not long ago, analysts at Needham initiated coverage of QBTS with a buy rating and a price target of $2.50.
Even better, the company just extended its partnership with Aramco to help solve complex geophysical optimization issues with quantum technologies. All of which should draw in a good number of eyeballs to the QBTS stock.
Source: Boykov / Shutterstock.com
One of the best ways to diversify your portfolio and spend less is with an exchange-traded fund (ETF) like the Defiance Quantum ETF(NYSEARCA:QTUM).
For one, with an expense ratio of 0.40%, the QTUM ETF provides exposure to companies on the forefront of machine learning, quantum computing, cloud computing and other transformative computing technologies,according to Defiance ETFs.
Two, some of 71 holdings include MicroStrategy (NASDAQ:MSTR), Nvidia (NASDAQ:NVDA), Micron(NASDAQ:MU), Coherent (NYSE:COHR), Applied Materials(NASDAQ:AMAT) and Rigetti Computing (NASDAQ:RGTI).
Even better, I can gain access to all 71 names for less than $65 with the ETF.
Three, the ETF has been explosive. Since bottoming out around $55, its now up to $63.37. From that current price, Id like to see the QTUM ETF race to $70 a share, near term.
On the date of publication, Ian Cooper did not hold (either directly or indirectly) any positions in the securities mentioned. The opinions expressed in this article are those of the writer, subject to the InvestorPlace.comPublishing Guidelines.
Ian Cooper, a contributor to InvestorPlace.com, has been analyzing stocks and options for web-based advisories since 1999.
Read the original:
3 Quantum Computing Stocks That Still Have Sky-High Potential - InvestorPlace
Posted in Quantum Computing
Comments Off on 3 Quantum Computing Stocks That Still Have Sky-High Potential – InvestorPlace
Riverlane, the company making quantum computing useful far sooner than anticipated – Maddyness
Posted: at 4:37 pm
You have recently been selected to the Tech Nations Future Fifty programme. What are your expectations and how does it feel to be identified as a future unicorn?
Were delighted to have been selected as the sole representative of a rich and diverse UK quantum tech industry. The quantum computing marketing is expected to grow to $28-72B over the next decade so I expect many unicorns to emerge, and we certainly hope to be one of them. Tech Nation has an excellent track record of picking and supporting high-growth leaders. Were excited to make the most of the opportunities the programme offers.
Quantum computing is an amazing idea the ability to harness the power of the atom to perform computation will transform many industries. Back in 2016, I was a research fellow at the University of Cambridge, and at that time, the majority view was that building a useful quantum computer wouldn't be possible in our lifetime - it was simply too big and too hard a problem. I disagreed but needed to validate this. By meeting with teams building quantum computers, I saw an amazing rate of progress a 'Moore's Law' of quantum computing with a doubling in power every two years, just like classical computers have done. That was the catalyst moment for me, and it became clear that if that trend continued, the next big problem would be quantum error correction. I founded Riverlane to make useful quantum computers a reality sooner!
Were building a technology called the quantum error correction stack, which corrects errors in quantum computers. Todays quantum computers can only perform a thousand or so operations before they fail under the weight of these errors. Quantum error correction technology will ultimately enable trillions of error-free operations, unlocking their full and transformative potential.
Implementing quantum error correction to achieve this milestone requires specialised knowledge of quantum science, engineering, software development and chip manufacturing. That makes quantum error correction systems difficult for each quantum computer maker to develop independently. Our strategy is not dissimilar to NVIDIA in providing a core enabling technology for an entirely new computing category.
When Riverlane was founded in 2016, there was a lot of focus on developing software applications to solve novel problems on small-scale quantum computers, a phase known as the noisy intermediate-scale quantum (NISQ) era. However, after the limits of NISQ became apparent due to considerable error rates hindering calculations, the industry shifted focus to building large and reliable quantum computers that could overcome the error problem
This is something weve been working on from the start through the invention of our quantum error correction stack but were now doubling down on its development to meet this growing demand from the industry. An important part to this has been scaling our team to nearly 100 people across our two offices in Cambridge (UK) and Boston (US) - two world-leading centres for quantum computing research and development.
Its a common misconception that you need a PhD in quantum physics or computer science to work in our field. The reality is we need people with a wide range of skills and from the broadest possible mix of backgrounds and demographics. Collectively, were a group that loves tackling hard and complex problems if not the hardest! This requires a culture that blends extremes of creativity, curiosity, problem-solving and analytical skills, plus an alchemy of driving urgency and zen like patience. Im also proud of the extraordinary openness and diversity of our team, including a healthy gender mix in a field where this is the exception not the norm.
Ive been fascinated with quantum physics since I was a student. Back then, the idea of building a computer that applied the unique properties of subatomic particles into computers to transform our understanding of nature and the universe was pure science fiction. Building a company that is now achieving this feels almost miraculous. Building a company with the right mix of skills and shared focus to do far faster than previously imaginable is brutally tricky and joyously rewarding in equal parts
Last September, we launched the worlds first quantum error correction chip. As the quantum computing industry develops, these chips will get better and better, faster and faster. Theyll ultimately enable the quantum industry to scale beyond its current limitations to achieve its full potential to solve currently impossible problems in areas like healthcare, climate science and chemistry. At a recent quantum conference, someone stood up and said quantum computing will be bigger than fire. I wouldnt go quite that far! But theyll unlock a fundamental new era of human knowledge and thats super exciting.
Have a bold and ambitious vision thats underpinned by a proven insight and data. In my case, it was that the presumption that a quantum computer was simply too hard to ever build could be disproven and overcome. Once you have this, be ready to learn fast and pivot fast in your tactics but never lose sight of your goal.
I spend at least a third of my time travelling. Meeting global leaders in our field face to face to hear their ideas, track their progress and build partnerships is priceless. When Im home, Im lucky enough to live about a mile from our office in Cambridge. No matter the weather, I walk to and from work every day. Cambridge is a beautiful place - the thinking time and fresh air give me energy and a calm headspace.
Steve Brierley is the CEO of Riverlane.
Tech Nations Future Fifty Programmeis designed to support late-stage companies with access and growth opportunities, the programme has supported some of the UKs most prominent unicorns, including Monzo, Darktrace, Revolut, Starling, Skyscanner and Deliveroo.
Read the original post:
Riverlane, the company making quantum computing useful far sooner than anticipated - Maddyness
Posted in Quantum Computing
Comments Off on Riverlane, the company making quantum computing useful far sooner than anticipated – Maddyness