The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Category Archives: Quantum Computing
Start-ups join Google, SpaceX and OneWeb to bring new technologies to space – CNBC
Posted: January 12, 2020 at 11:50 pm
Space X CEO Elon Musk
Photo by Kevork Djansezian
For a long time, American space exploration was a closed circle: There was just one customer, the U.S. government (NASA) and a handful of giant defense contractors. Then in 2008 Elon Musk's SpaceX put the first privately-financed rocket into orbit, Jeff Bezos' Blue Origin promised private flights, and space was suddenly a lively market with companies vying to put satellites and humans into orbit.
A decade later hundreds of start-ups have flocked to the space sector, bringing sophisticated technologies that include artificial intelligence, quantum computing, phased array radar, space-based solar power, "tiny" satellites and services that could not be imagined just a few years ago.
Space Angels, an early stage investor that also tracks investments in the sector, reported that venture capitalists invested $5 billion into space technologies in the first three quarters of 2019, putting the year on track to be the biggest year yet, with Blue Origin pulling in $1.4 billion from Bezos. Since 2009, said Chad Anderson, CEO of Space Angels, investors have poured nearly $24 billion into 509 companies.
Anderson said that SpaceX triggered the transformation not just by offering competition to NASA but publishing its prices for a launch. Before that revelation, space was really an opaque market, making it difficult for potential competitors to price their products. "It's been a really big decade for commercial space," said Anderson.
The largest amount of venture capital still goes into the most fundamental task: putting satellites into orbit. Anderson says 89 companies have received funding for so-called small-lift launch vehicles. These are companies promising to put payloads of up to 2,000 kilos (4,400 lbs) into low Earth orbit. Their focus is a new generation of small satellites such as those used by OneWeb and SpaceX's StarLink, which promise broadband internet access in even the most remote parts of the world by deploying "constellations" of hundreds or even thousands of tiny satellites.
Satellites have become so mainstream you can now buy a standard 4-in. by 4-in. "cubesat" kit online. All this activity could mean 20,000 to 40,000 satellites joining the 1,000 now in orbit over the next few years. "It's quickly becoming congested," Anderson said of the market for small-lift launch. Of the venture-backed rocket companies, SpaceX and Rocket Lab, with launch sites in New Zealand and Virginia, are making regular launches, although Richard Branson's Virgin Galactic is scheduled to begin flying its manned shuttle this year.
The sky is also getting crowded. Aside from the thousands of new satellites scheduled for launch, there is already a lot of clutter in space as many as 250,000 pieces of junk and debris circle the Earth. Up to now the U.S. Air Force has taken the lead role in tracking debris and warning satellite operators about possible collisions. But the military's tracking radar, with some components dating back to the cold war, can only detect pieces 10 cm (4 in.) across or larger. LeoLabs, a start-up based in Menlo Park, California, has developed an advanced radar system that can detect objects in orbit as small as 2 cm (less than an inch) long.
LeoLabs' Kiwi Space Radar was set up in Central Otago, New Zealand, in 2019. It is the first in the world to track space debris smaller than 10 cm.
LeoLabs
A tiny object traveling at several thousand miles an hour can cause severe damage to a satellite. LeoLabs enables customers to track their small satellites more easily and to safely move them to a new position. "That will take a lot of the collision risks off the table," says founder and CEO Dan Ceperley. His company has built phased array radars that steer the radar beam electronically faster than a traditional dish antenna in three locations: Alaska, Texas and New Zealand. To date, LeoLabs has raised $17 million from venture funds, including Marc Bell Capital Partners, Seraphim Capital and Space Angels.
Many of the 1,000 satellites now in orbit are engaged in observing Earth. They monitor the weather, humidity and temperature, among dozens of other phenomena, and capture millions of images. SkyWatch, based in Waterloo, Ontario, recently closed a $10 million round of funding led by San Francisco's Bullpen Capital to develop its service to make satellite data easily available to companies.
SkyWatch would handle licensing and payment for data through subscription fees, and companies could use its software to build their own apps for tasks such as tracking crops or assessing damage from natural disasters. SkyWatch CEO James Slifierz compares his timing to the aftermath of the creation of the global positioning system infrastructure. Once GPS was in place, civilian applications followed.
The growing flow of data from satellites has raised concerns about data security. SpeQtral, based in Singapore, plans to build encryption keys based on the laws of quantum physics to protect space-to-Earth communications. "The security of any communications is essential," says Chune Yang Lum, CEO of SpeQtral, which has raised a $1.9 million seed round led by Space Capital, the venture arm of Space Angels. Quantum encryption has been touted as practically unbreakable.
An illustration of the SPS-ALPHA (Solar Power Satellite by means of Arbitrarily Large Phased Array) transmitting energy to Australia. This approach, in concept phase, includes a series of enormous platforms positioned in space in high Earth orbit to continuously collect and convert solar energy into electricity.
SPS-ALPHA concept and illustration, courtesy John C. Mankins
Start-ups don't have a monopoly on developing new space applications. Tech giant Google has sought ways to commercialize its growing expertise in artificial intelligence and its vast computing power in the cloud. "We work with some of our largest and most transformative customers to do something epic," said Scott Penberthy, director of applied AI at Google Cloud.
He said Google Cloud has done a number of projects with NASA's Frontier Development Lab, including one that takes low-resolution photographs and combines them using AI to create a high-resolution image. Another proposal from Google would enable navigation on the moon's surface (which has no GPS) by having AI comparing an astronaut's surroundings with photos of the moon taken from space.
NASA is itself trying to benefit from the innovations brought by start-ups. In December, NASA's Ames Research Center announced a deal with the Founders Institute, a renowned start-up accelerator, to make some of its technology available to start-up entrepreneurs. In September 2019 the space agency announced the latest round of its Tipping Point Program, a public-private initiative, was distributing $43.2 million to 14 American companies whose technologies could contribute to NASA's plan for its Moon-to-Mars project. Participants include SpaceX, which will work on nozzles to refuel spaceships, and Blue Canyon Technologies, a Denver start-up developing autonomous navigation systems to enable small satellites to maneuver without communicating with "Earth."
In the past five years, NASA has awarded five groups of Tipping Point Awards, worth more than $120 million combined. Broadly speaking, a company or project selected for a tipping point award receives NASA resources up to a fixed amount, with the private side paying for at least 25% of the program's total costs. This allows NASA to shepherd the development of important space technologies while trying to save the agency money.
Despite the surge of cash, not all space projects find funding easily. John Mankins, a former NASA physicist, has long been an advocate of space-based solar power. Satellites would capture solar energy, convert it to microwaves and beam it down to Earth, where it would be converted into electricity. Mankins believes such a system taking advantage of recent technological advances can deliver electricity at a competitive price to areas of the world where power is expensive.
Mankins' company, Solar Space Technologies, has formed a joint venture with an Australian company to seek funding to supply power to remote parts of Australia with minimum impact on the environment. While the cost for space-based solar power may have been prohibitive in the past, Dr. Michael Shara, an astrophysicist at New York's Museum of Natural History, said "it really gets interesting" as costs come down.
Anderson, the Space Angels CEO, said venture capitalists hesitate to invest in space solar power because these are large infrastructure projects. "They require a significant amount of capex, and their paybacks are much longer than the typical 10-year lifetime of a venture capital fund." But as concern about climate change increases and the cost of putting "stuff" in orbit drops, clean energy from space may become an attractive entrepreneurial proposition.
More from Tech Drivers:Meet the robots that may be coming to the airport near youHow to use Apple Pay on all your devicesUber aviation head Eric Allison on new partnership with Hyundai
Continue reading here:
Start-ups join Google, SpaceX and OneWeb to bring new technologies to space - CNBC
Posted in Quantum Computing
Comments Off on Start-ups join Google, SpaceX and OneWeb to bring new technologies to space – CNBC
Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s – The Daily Hodl
Posted: at 11:50 pm
The new decade will unfurl a bag of seismic shifts, predicts the creator of Cardano and Ethereum, Charles Hoskinson. And these changes will propel cryptocurrency and blockchain solutions to the forefront as legacy systems buckle, transform or dissolve.
In an ask-me-anything session uploaded on January 3rd, the 11th birthday of Bitcoin, Hoskinson acknowledges how the popular cryptocurrency gave him an eye-opening introduction to the world of global finance, and he recounts how dramatically official attitudes and perceptions have changed.
Every central bank in the world is aware of cryptocurrencies and some are even taking positions in cryptocurrencies. Theres really never been a time in human history where one piece of technology has obtained such enormous global relevance without any central coordinated effort, any central coordinated marketing. No company controls it and the revolution is just getting started.
And he expects its emergence to coalesce with other epic changes. In a big picture reveal, Hoskinson plots some of the major events he believes will shape the new decade.
2020 Predictions
Hoskinson says the consequences of these technologies will reach every government service and that cryptocurrencies will gain an opening once another economic collapse similar to 2008 shakes the markets this decade.
I think that means its a great opening for cryptocurrencies to be ready to start taking over the global economy.
Hoskinson adds that hes happy to be alive to witness all of the changes he anticipates, including a reorganization of the media.
This is the last decade of traditional organized media, in my view. Were probably going to have less CNNs and Fox Newses and Bloombergs and Wall Street Journals and more Joe Rogans, especially as we enter the 2025s and beyond. And I think our space in particular is going to fundamentally change the incentives of journalism. And well actually move to a different way of paying for content, curating content.
Featured Image: Shutterstock/Liu zishan
Read the rest here:
Posted in Quantum Computing
Comments Off on Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s – The Daily Hodl
AI, ML and quantum computing to cement position in 2020 – Tech Observer
Posted: at 11:50 pm
From the emerge of cognitive intelligence, in-memory-computing, fault-tolerant quantum computing, new materials-based semiconductor devices, to faster growth of industrial IoT, large-scale collaboration between machines, production-grade blockchain applications, modular chip design, and AI technologies to protect data privacy, more technology advancements and breakthroughs are expected to gain momentum and generate big impacts on our daily life.
We are at the era of rapid technology development. In particular, technologies such as cloud computing, artificial intelligence, blockchain, and data intelligence are expected to accelerate the pace of the digital economy, said Jeff Zhang, Head of Alibaba DAMO Academy and President of Alibaba Cloud Intelligence.
The following are highlights from the Alibaba DAMO Academy predictions for the top 10 trends in the tech community for this year:
Artificial intelligence has reached or surpassed humans in the areas of perceptual intelligence such as speech to text, natural language processing, video understanding etc. but in the field of cognitive intelligence that requires external knowledge, logical reasoning, or domain migration, it is still in its infancy. Cognitive intelligence will draw inspiration from cognitive psychology, brain science, and human social history, combined with techniques such as cross domain knowledge graph, causality inference, and continuous learning to establish effective mechanisms for stable acquisition and expression of knowledge. These make machines to understand and utilize knowledge, achieving key breakthroughs from perceptual intelligence to cognitive intelligence.
In Von Neumann architecture, memory and processor are separate and the computation requires data to be moved back and forth. With the rapid development of data-driven AI algorithms in recent years, it has come to a point where the hardware becomes the bottleneck in the explorations of more advanced algorithms. In Processing-in-Memory (PIM) architecture, in contrast to the Von Neumann architecture, memory and processor are fused together and computations are performed where data is stored with minimal data movement. As such, computation parallelism and power efficiency can be significantly improved. We believe the innovations on PIM architecture are the tickets to next-generation AI.
In 2020, 5G, rapid development of IoT devices, cloud computing and edge computing will accelerate the fusion of information system, communication system, and industrial control system. Through advanced Industrial IoT, manufacturing companies can achieve automation of machines, in-factory logistics, and production scheduling, as a way to realize C2B smart manufacturing. In addition, interconnected industrial system can adjust and coordinate the production capability of both upstream and downstream vendors. Ultimately it will significantly increase the manufacturers productivity and profitability. For manufacturers with production goods that value hundreds of trillion RMB, if the productivity increases 5-10%, it means additional trillions of RMB.
Traditional single intelligence cannot meet the real-time perception and decision of large-scale intelligent devices. The development of collaborative sensing technology of Internet of things and 5G communication technology will realize the collaboration among multiple agents machines cooperate with each other and compete with each other to complete the target tasks. The group intelligence brought by the cooperation of multiple intelligent bodies will further amplify the value of the intelligent system: large-scale intelligent traffic light dispatching will realize dynamic and real-time adjustment, while warehouse robots will work together to complete cargo sorting more efficiently; Driverless cars can perceive the overall traffic conditions on the road, and group unmanned aerial vehicle (UAV) collaboration will get through the last -mile delivery more efficiently.
Traditional model of chip design cannot efficiently respond to the fast evolving, fragmented and customized needs of chip production. The open source SoC chip design based on RISC-V, high-level hardware description language, and IP-based modular chip design methods have accelerated the rapid development of agile design methods and the ecosystem of open source chips. In addition, the modular design method based on chiplets uses advanced packaging methods to package the chiplets with different functions together, which can quickly customize and deliver chips that meet specific requirements of different applications.
BaaS (Blockchain-as-a-Service) will further reduce the barriers of entry for enterprise blockchain applications. A variety of hardware chips embedded with core algorithms used in edge, cloud and designed specifically for blockchain will also emerge, allowing assets in the physical world to be mapped to assets on blockchain, further expanding the boundaries of the Internet of Value and realizing multi-chain interconnection. In the future, a large number of innovative blockchain application scenarios with multi-dimensional collaboration across different industries and ecosystems will emerge, and large-scale production-grade blockchain applications with more than 10 million DAI (Daily Active Items) will gain mass adoption.
In 2019, the race in reaching Quantum Supremacy brought the focus back to quantum computing. The demonstration, using superconducting circuits, boosts the overall confidence on superconducting quantum computing for the realization of a large-scale quantum computer. In 2020, the field of quantum computing will receive increasing investment, which comes with enhanced competitions. The field is also expected to experience a speed-up in industrialization and the gradual formation of an eco-system. In the coming years, the next milestones will be the realization of fault-tolerant quantum computing and the demonstration of quantum advantages in real-world problems. Either is of a great challenge given the present knowledge. Quantum computing is entering a critical period.
Under the pressure of both Moores Law and the explosive demand of computing power and storage, it is difficult for classic Si based transistors to maintain sustainable development of the semiconductor industry. Until now, major semiconductor manufacturers still have no clear answer and option to chips beyond 3nm. New materials will make new logic, storage, and interconnection devices through new physical mechanisms, driving continuous innovation in the semiconductor industry. For example, topological insulators, two-dimensional superconducting materials, etc. that can achieve lossless transport of electron and spin can become the basis for new high-performance logic and interconnect devices; while new magnetic materials and new resistive switching materials can realize high-performance magnetics Memory such as SOT-MRAM and resistive memory.
Abstract: The compliance costs demanded by the recent data protection laws and regulations related to data transfer are getting increasingly higher than ever before. In light of this, there have been growing interests in using AI technologies to protect data privacy. The essence is to enable the data user to compute a function over input data from different data providers while keeping those data private. Such AI technologies promise to solve the problems of data silos and lack of trust in todays data sharing practices, and will truly unleash the value of data in the foreseeable future.
With the ongoing development of cloud computing technology, the cloud has grown far beyond the scope of IT infrastructure, and gradually evolved into the center of all IT technology innovations. Cloud has close relationship with almost all IT technologies, including new chips, new databases, self-driving adaptive networks, big data, AI, IoT, blockchain, quantum computing and so forth. Meanwhile, it creates new technologies, such as serverless computing, cloud-native software architecture, software-hardware integrated design, as well as intelligent automated operation. Cloud computing is redefining every aspect of IT, making new IT technologies more accessible for the public. Cloud has become the backbone of the entire digital economy.
Link:
AI, ML and quantum computing to cement position in 2020 - Tech Observer
Posted in Quantum Computing
Comments Off on AI, ML and quantum computing to cement position in 2020 – Tech Observer
Were approaching the limits of computer power we need new programmers now – The Guardian
Posted: at 11:50 pm
Way back in the 1960s, Gordon Moore, the co-founder of Intel, observed that the number of transistors that could be fitted on a silicon chip was doubling every two years. Since the transistor count is related to processing power, that meant that computing power was effectively doubling every two years. Thus was born Moores law, which for most people working in the computer industry or at any rate those younger than 40 has provided the kind of bedrock certainty that Newtons laws of motion did for mechanical engineers.
There is, however, one difference. Moores law is just a statement of an empirical correlation observed over a particular period in history and we are reaching the limits of its application. In 2010, Moore himself predicted that the laws of physics would call a halt to the exponential increases. In terms of size of transistor, he said, you can see that were approaching the size of atoms, which is a fundamental barrier, but itll be two or three generations before we get that far but thats as far out as weve ever been able to see. We have another 10 to 20 years before we reach a fundamental limit.
Weve now reached 2020 and so the certainty that we will always have sufficiently powerful computing hardware for our expanding needs is beginning to look complacent. Since this has been obvious for decades to those in the business, theres been lots of research into ingenious ways of packing more computing power into machines, for example using multi-core architectures in which a CPU has two or more separate processing units called cores in the hope of postponing the awful day when the silicon chip finally runs out of road. (The new Apple Mac Pro, for example, is powered by a 28-core Intel Xeon processor.) And of course there is also a good deal of frenzied research into quantum computing, which could, in principle, be an epochal development.
But computing involves a combination of hardware and software and one of the predictable consequences of Moores law is that it made programmers lazier. Writing software is a craft and some people are better at it than others. They write code that is more elegant and, more importantly, leaner, so that it executes faster. In the early days, when the hardware was relatively primitive, craftsmanship really mattered. When Bill Gates was a lad, for example, he wrote a Basic interpreter for one of the earliest microcomputers, the TRS-80. Because the machine had only a tiny read-only memory, Gates had to fit it into just 16 kilobytes. He wrote it in assembly language to increase efficiency and save space; theres a legend that for years afterwards he could recite the entire program by heart.
There are thousands of stories like this from the early days of computing. But as Moores law took hold, the need to write lean, parsimonious code gradually disappeared and incentives changed. Programming became industrialised as software engineering. The construction of sprawling software ecosystems such as operating systems and commercial applications required large teams of developers; these then spawned associated bureaucracies of project managers and executives. Large software projects morphed into the kind of death march memorably chronicled in Fred Brookss celebrated book, The Mythical Man-Month, which was published in 1975 and has never been out of print, for the very good reason that its still relevant. And in the process, software became bloated and often inefficient.
But this didnt matter because the hardware was always delivering the computing power that concealed the bloatware problem. Conscientious programmers were often infuriated by this. The only consequence of the powerful hardware I see, wrote one, is that programmers write more and more bloated software on it. They become lazier, because the hardware is fast they do not try to learn algorithms nor to optimise their code this is crazy!
It is. In a lecture in 1997, Nathan Myhrvold, who was once Bill Gatess chief technology officer, set out his Four Laws of Software. 1: software is like a gas it expands to fill its container. 2: software grows until it is limited by Moores law. 3: software growth makes Moores law possible people buy new hardware because the software requires it. And, finally, 4: software is only limited by human ambition and expectation.
As Moores law reaches the end of its dominion, Myhrvolds laws suggest that we basically have only two options. Either we moderate our ambitions or we go back to writing leaner, more efficient code. In other words, back to the future.
What just happened?Writer and researcher Dan Wang has a remarkable review of the year in technology on his blog, including an informed, detached perspective on the prospects for Chinese domination of new tech.
Algorithm says noTheres a provocative essay by Cory Doctorow on the LA Review of Books blog on the innate conservatism of machine-learning.
Fall of the big beastsHow to lose a monopoly: Microsoft, IBM and antitrust is a terrific long-view essay about company survival and change by Benedict Evans on his blog.
Read more from the original source:
Were approaching the limits of computer power we need new programmers now - The Guardian
Posted in Quantum Computing
Comments Off on Were approaching the limits of computer power we need new programmers now – The Guardian
Is Quantum Technology The Future Of The World? – The Coin Republic
Posted: at 11:50 pm
Steve Anderrson Saturday, 11 January 2020, 04:58 EST Modified date: Saturday, 11 January 2020, 04:58 EST
At a glance, the quantum volume is a measure of the complexity of a problem that a quantum computer can provide a solution. Quantum volume can also use to compare the performance of different quantum computers.
Ever since 2016, the IBM executives have doubled this value. In the 21st Century, Quantum computers have hailed as one of the most important innovations of the 21st century, along with potential applications in almost all fields of industries. Be it healthcare or artificial intelligence, and even financial modelling, to name a few.
Recently, quantum computers have also entered a new phase of development which can describe as practical. The first real quantum computer was launched in 2009 by Jonathan Holm. From that time, the quantum computer development has travelled a long way. At the moment, the industry driven by a handful of tech giants, including Google and IBM.
Even though IBMs latest advances viewed as significant advances, quantum computers can currently only be used for particular tasks. This indicates that they are far away from the general-purpose which classic computers serve us and to which we are used to.
Therefore, some people start worrying that the encryption technology which used to protect cryptocurrencies, for example, bitcoin may get destroyed. This worry is at least unfounded at present.
As the network is entirely built around the secure cryptographic transactions, a powerful quantum computer could eventually crack the encryption technology which used to generate Bitcoins private keys.
However, as per an article which was published by Martin Roetteler and various co-authors in June in 2017, such type of a machine requires approximately 2,500 qubits of processing power so that they can crack the 256-bit encryption technology which is used by Bitcoin.
Since the most powerful quantum computer which the world currently has only consisted of 72 qubit processors, one thing is clear that it will take several years for a quantum computer to reach the level of threatening encryption technology.
With the help of IBMs computing power which keeps doubling every year, and also the fact that Google has achieved quantum hegemony, Quantum might be working to ensure that Bitcoin can resist potential quantum computing attacks.
Read more from the original source:
Is Quantum Technology The Future Of The World? - The Coin Republic
Posted in Quantum Computing
Comments Off on Is Quantum Technology The Future Of The World? – The Coin Republic
Global Quantum Computing Market: What it got next? Find out with the latest research available at PMI – Pro News Time
Posted: at 11:50 pm
In this Quantum Computing Market Global Industry Analysis & Forecast to 2030 research report, the central factors driving the advancement of this industry were recorded and the business accessories and end overseers were indulgent. This statistical surveying Quantum Computing report investigates and inspects the industry and determines a widely inclusive estimate of its development and its details. Another perspective that was efficient is the cost analysis of the prime products driving in the Quantum Computing Industry remembering the overall revenue of the manufacturers.
The following key Quantum Computing Market insights and pointers are covered during this report:
Request a demo sample: https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/571
The prime manufacturers covered during this report are:
Wave Systems Corp, 1QB Information Technologies Inc, QC Ware, Corp, Google Inc, QxBranch LLC, Microsoft Corporation, International Business Machines Corporation, Huawei Technologies Co., Ltd, ID Quantique SA, and Atos SE.
Detail Segmentation:
Download PDF Brochure @ https://www.prophecymarketinsights.com/market_insight/Insight/request-pdf/571
The report is an entire guide in providing complete Quantum Computing processes, cost structures, raw materials, investment feasibility, and investment return analysis. The SWOT analysis, market growth, production, profit, and supply-demand statistics are offered
The historical and future trends, prices, product demand, prospects, and Quantum Computing marketing channels are stated. The current business and progressions, future methodologies, market entrants are explained. The consumers, distributors, manufacturers, traders, and dealers in Business Intelligence (Bi) Software Market are covered. A comprehensive research methodology, market size estimation, market breakdown, and data triangulation is roofed.
Checkout Complete Details Here: https://www.prophecymarketinsights.com/market_insight/Global-Quantum-Computing-Market-By-571
Contact Us:
Mr. Alex (Sales Manager)
Prophecy Market Insights
Phone: +1 860 531 2701
Email: [emailprotected]
Here is the original post:
Posted in Quantum Computing
Comments Off on Global Quantum Computing Market: What it got next? Find out with the latest research available at PMI – Pro News Time
How Quantum Computers Work | HowStuffWorks
Posted: January 6, 2020 at 5:47 am
The massive amount of processing power generated by computer manufacturers has not yet been able to quench our thirst for speed and computing capacity. In 1947, American computer engineer Howard Aiken said that just six electronic digital computers would satisfy the computing needs of the United States. Others have made similar errant predictions about the amount of computing power that would support our growing technological needs. Of course, Aiken didn't count on the large amounts of data generated by scientific research, the proliferation of personal computers or the emergence of the Internet, which have only fueled our need for more, more and more computing power.
Will we ever have the amount of computing power we need or want? If, as Moore's Law states, the number of transistors on a microprocessor continues to double every 18 months, the year 2020 or 2030 will find the circuits on a microprocessor measured on an atomic scale. And the logical next step will be to create quantum computers, which will harness the power of atoms and molecules to perform memory and processing tasks. Quantum computers have the potential to perform certain calculations significantly faster than any silicon-based computer.
Scientists have already built basic quantum computers that can perform certain calculations; but a practical quantum computer is still years away. In this article, you'll learn what a quantum computer is and just what it'll be used for in the next era of computing.
You don't have to go back too far to find the origins of quantum computing. While computers have been around for the majority of the 20th century, quantum computing was first theorized less than 30 years ago, by a physicist at the Argonne National Laboratory. Paul Benioff is credited with first applying quantum theory to computers in 1981. Benioff theorized about creating a quantum Turing machine. Most digital computers, like the one you are using to read this article, are based on the Turing Theory. Learn what this is in the next section.
Read the original here:
Posted in Quantum Computing
Comments Off on How Quantum Computers Work | HowStuffWorks
Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips – ScienceAlert
Posted: at 5:47 am
As 2019 winds to a close, the journey towards fully realised quantum computing continues: physicists have been able to demonstrate quantum teleportation between two computer chips for the first time.
Put simply, this breakthrough means that information was passed between the chips not by physical electronic connections, but through quantum entanglement by linking two particles across a gap using the principles of quantum physics.
We don't yet understand everything about quantum entanglement (it's the same phenomenon Albert Einstein famously called "spooky action"), but being able to use it to send information between computer chips is significant, even if so far we're confined to a tightly controlled lab environment.
"We were able to demonstrate a high-quality entanglement link across two chips in the lab, where photons on either chip share a single quantum state," explains quantum physicist Dan Llewellynfrom the University of Bristol in the UK.
"Each chip was then fully programmed to perform a range of demonstrations which utilise the entanglement."
Hypothetically, quantum entanglement can work over any distance. Two particles get inextricably linked together, which means looking at one tells us something about the other, wherever it is (in this case, on a separate computer chip).
To achieve their result, the team generated pairs of entangled photons, encoding quantum information in a way that ensured low levels of interference and high levels of accuracy. Up to four qubits the quantum equivalent of classical computing bits were linked together.
"The flagship demonstration was a two-chip teleportation experiment, whereby the individual quantum state of a particle is transmitted across the two chips after a quantum measurement is performed," says Llewellyn.
"This measurement utilises the strange behaviour of quantum physics, which simultaneously collapses the entanglement link and transfers the particle state to another particle already on the receiver chip."
The researchers were then able to run experiments in which the fidelity reached 91 percent as in, almost all the information was accurately transmitted and logged.
Scientists are learning more and more about how quantum entanglement works, but for now it's very hard to control. It's not something you can install inside a laptop: you need a lot of bulky, expensive scientific equipment to get it working.
But the hope is that advances in the lab, such as this one, might one day lead to advances in computing that everyone can take advantage of super-powerful processing power and a next-level internet with built-in hacking protections.
The low data loss and high stability of the teleportation, as well as the high level of control that the scientists were able to get over their experiments, are all promising signs in terms of follow-up research.
It's also a useful study for efforts to get quantum physics working with the silicon chip (Si-chip) tech used in today's computers, and the complementary metal-oxide-semiconductor (CMOS) techniques used to make those chips.
"In the future, a single Si-chip integration of quantum photonic devices and classical electronic controls will open the door for fully chip-based CMOS-compatible quantum communication and information processing networks," says quantum physicist Jianwei Wang, from Peking University in China.
The research has been published in Nature Physics.
See the article here:
Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips - ScienceAlert
Posted in Quantum Computing
Comments Off on Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips – ScienceAlert
Superconductor or not? They’re exploring the identity crisis of this weird quantum material. – News@Northeastern
Posted: at 5:47 am
Northeastern researchers have used a powerful computer model to probe a puzzling class of copper-based materials that can be turned into superconductors. Their findings offer tantalizing clues for a decades-old mystery, and a step forward for quantum computing.
The ability of a material to let electricity flow comes from the way electrons within their atoms are arranged. Depending on these arrangements, or configurations, all materials out there are either insulators or conductors of electricity.
But cuprates, a class of mysterious materials that are made from copper oxides, are famous in the scientific community for having somewhat of an identity issue that can make them both insulators and conductors.
Under normal conditions, cuprates are insulators: materials that inhibit the flow of electrons. But with tweaks to their composition, they can transform into the worlds best superconductors.
The finding of this kind of superconductivity in 1986 won its discoverers a Nobel Prize in 1987, and fascinated the scientific community with a world of possibilities for improvements to supercomputing and other crucial technologies.
But with fascination came 30 years of bewilderment: Scientists have not been able to fully decipher the arrangement of electrons that encodes for superconductivity in cuprates.
Mapping the electronic configuration of these materials is arguably one of the toughest challenges in theoretical physics, says Arun Bansil, University Distinguished Professor of physics at Northeastern. And, he says, because superconductivity is a weird phenomenon that only happens at temperatures as low as -300 F (or about as cold as it gets on Uranus), figuring out the mechanisms that make it possible in the first place could help researchers make superconductors that work at room temperature.
Now, a team of researchers that includes Bansil and Robert Markiewicz, a professor of physics at Northeastern, is presenting a new way to model these strange mechanisms that lead to superconductivity in cuprates.
In a study published in Proceedings of the National Academy of Sciences, the team accurately predicted the behavior of electrons as they move to enable superconductivity in a group of cuprates known as yttrium barium copper oxides.
In these cuprates, the study finds, superconductivity emerges from many types of electron configurations. A whopping 26 of them, to be specific.
During this transition phase, the material will in essence become some kind of a soup of different phases, Bansil says. The split personalities of these wonderful materials are being now revealed for the first time.
The physics within cuprate superconductors are intrinsically weird. Markiewicz thinks of that complexity as the classical Indian myth of the blind men and the elephant, which has been a joke for decades among theoretical physicists who study cuprates.
According to the myth, blind men meet an elephant for the first time, and try to understand what the animal is by touching it. But because each of them touches only one part of its bodythe trunk, tail, or legs, for examplethey all have a different (and limited) concept of what an elephant is.
In the beginning, we all looked [at cuprates] in different ways, Markiewicz says. But we knew that, sooner or later, the right way was going to show up.
The mechanisms behind cuprates could also help explain the puzzling physics behind other materials that turn into superconductors at extreme temperatures , Markiewicz says, and revolutionize the way they can be used to enable quantum computing and other technologies that process data at ultra-fast speeds.
Were trying to understand how they come together in the real cuprates that are used in experiments, Markiewicz says.
The challenge of modeling cuprate superconductors comes down to the weird field of quantum mechanics, which studies the behavior and movement of the tiniest bits of matterand the strange physical rules that govern everything at the scale of atoms.
In any given materialsay, the metal in your smartphoneelectrons contained within just the space of a fingertip could amount to the number one followed by 22 zeros, Bansil says. Modeling the physics of such a massive number of electrons has been extremely challenging ever since the field of quantum mechanics was born.
Bansil likes to think of this complexity as butterflies inside a jar flying fast and cleverly to avoid colliding with each other. In a conducting material, electrons also move around. And because of a combination of physical forces, they also avoid each other. Those characteristics are at the core of what makes it hard to model cuprate materials.
The problem with the cuprates is that they are at the border between being a metal and an insulator, and you need a calculation that is so good that it can systematically capture that crossover, Markiewicz says. Our new modeling can capture this behavior.
The team includes researchers from Tulane University, Lappeenranta University of Technology in Finland, and Temple University. The researchers are the first to model the electronic states in the cuprates without adding parameters by hand to their computations, which physicists have had to do in the past.
To do that, the researchers modeled the energy of atoms of yttrium barium copper oxides at their lowest levels. Doing that allows researchers to trace electrons as they excite and move around, which in turn helps describe the mechanisms supporting the critical transition into superconductivity.
That transition, known as the pseudogap phase in the material, could be described simply as a door, Bansil says. In an insulator, the structure of the material is like a closed door that lets no one through. If the door is wide openas it would be for a conductorelectrons pass through easily.
But in materials that experience this pseudogap phase, that door would be slightly open. The dynamics of what transforms that door into a really wide open door (or, superconductor) remains a mystery, but the new model captures 26 electron configurations that could do it.
With our ability to now do this first-principles-parameter-free-type of modeling, we are in a position to actually go further, and hopefully begin to understand this pseudogap phase a bit better, Bansil says.
For media inquiries, please contact Mike Woeste at m.woeste@northeastern.edu or 617-373-5718.
Link:
Posted in Quantum Computing
Comments Off on Superconductor or not? They’re exploring the identity crisis of this weird quantum material. – News@Northeastern
January 9th: France will unveil its quantum strategy. What can we expect from this report? – Quantaneo, the Quantum Computing Source
Posted: at 5:47 am
It is eagerly awaited! The "Forteza" report, named after its rapporteur, Paula Forteza, Member of Parliament for La Rpublique en Marche (political party of actual President Emmanuel Macron), should finally be officially revealed on January 9th. The three rapporteurs are Paula Forteza, Member of Parliament for French Latin America and the Caribbean, Jean-Paul Herteman, former CEO of Safran, and Iordanis Kerenidis, researcher at the CNRS. Announced last April, this report was initially due at the end of August, then in November, then... No doubt the complex agenda, between the social movements in France, and the active participation of the MP in the Parisian election campaign of Cdric Villani, mathematician and dissident of La Rpublique en Marche... had to be shaken up. In any case, it is thus finally on January 9th that this report entitled "Quantum: the technological shift that France will not miss", will be unveiled.
"Entrusted by the Prime Minister in April 2019, the mission on quantum technologies ends with the submission of the report by the three rapporteurs Paula Forteza, Jean-Paul Herteman, and Iordanis Kerenidis. Fifty proposals and recommendations are thus detailed in order to strengthen France's role and international position on these complex but highly strategic technologies. The in-depth work carried out over the last few months, fueled by numerous consultations with scientific experts in the field, has led the rapporteurs to the conclusion that France's success in this field will be achieved by making quantum technologies more accessible and more attractive. This is one of the sine qua non conditions for the success of the French strategy", explains the French National Congress in the invitation to the official presentation ceremony of the report.
The presentation, by the three rapporteurs, will be made in the presence of the ministers for the army, the economy and finance, and higher education and research. The presence of the Minister of the Armed Forces, as well as the co-signature of the report by the former president of Safran, already indicates that military applications will be one of the main areas of proposals, and possibly of funding. Just as is the case in the United States, China or Russia.
Of course, the report will go into detail about the role of research, and of the CNRS, in advances in quantum computing and communication. Of course, the excellent work of French researchers, in collaboration with their European peers, will be highlighted. And of course, France's excellence in these fields will be explained. France is a pioneer in this field, but the important questions are precisely what the next steps will be. The National Congress indicates that this report will present 50 "proposals and recommendations". Are we to conclude that it will be just a list of proposals? Or will we know how to move from advice to action?
These are our pending questions:
- The United States is announcing an investment of USD 1.2 billion, China perhaps USD 10 billion, Great Britain about 1 billion euros, while Amazon's R&D budget alone is USD 18 billion... how can a country like France position itself regarding the scale of these investments? To sum up, is the amount of funds allocated to this research and development in line with the ambitions?
- Mastering quantum technologies are becoming a geopolitical issue between the United States and China. Should Europe master its own technologies so as not to depend on these two major powers? On the other hand, is this not the return of a quantum "Plan calcul from the 60s? How can we avoid repeating the same mistakes?
- Cecilia Bonefeld-Dahl, Managing Director of DigitalEurope recently wrote that Europe risks being deprived of the use of quantum technologies if it does not develop them itself. Christophe Jurzcak, the head of Quantonation, stated that it is not certain that France will have access to quantum technologies if it does not develop them itself. Is this realistic? Do we have the ressources?
- French companies currently invest very little in research in the field of quantum computing. With the exception of Airbus, the main feedback that we know of is in Canada, Australia, Spain, Germany, etc. Should we also help companies to embrace these technologies, or should we only finance research and development on the part of universities and business creators? Is there a support component for companies? So that technologies are not simply developed in France and sold elsewhere, but that France is the leading market for local developments.
See you on January 9th on Decideo for more details and our objective analysis of the content of this document.
Go here to see the original:
Posted in Quantum Computing
Comments Off on January 9th: France will unveil its quantum strategy. What can we expect from this report? – Quantaneo, the Quantum Computing Source