Page 89«..1020..88899091..100..»

Category Archives: Astronomy

Space shock: Astronomers discover stunning ‘lighthouse beam’ with answers to start of life – Express.co.uk

Posted: October 12, 2019 at 12:49 pm

The team - led by Professor Joss Bland-Hawthorn from Australia - used data gathered by the Hubble Space Telescope to help understand the evolution of the galaxy. They say that a cataclysmic energy flare ripped through our galaxy some 3.5 million years ago. The massive blast of energy and radiation, known as a Sifter flare, was so powerful that its impact was felt 200,000 light-years from our galaxy.

The flare created two enormous "ionisation cones" that sliced through the Milky Way.

Mr Bland-Hawthorn, who also works at the University of Sydney said that "the flare must have been a bit like a lighthouse beam".

He added: Imagine darkness, and then someone switches on a lighthouse beacon for a brief period of time.

Professor Lisa Kewley, Director of ASTRO 3D said: A massive blast of energy and radiation came right out of the galactic centre and into the surrounding material.

This shows that the centre of the Milky Way is a much more dynamic place than we had previously thought. It is lucky were not residing there!

The discovery that the Milky Ways centre was more powerful than previously thought, is leading to new ideas on the evolution of the Milky Way.

Magma Guglielmo from the University of Sydney, said: "These results dramatically change our understanding of the Milky Way.

"We always thought about our Galaxy as an inactive galaxy, with a not so bright centre.

JUST IN'Monster' black hole 10 times size of Sun is lurking in galaxy

It is a barred spiral galaxy with a diameter between 150,000 and 200,000 light-years and is estimated to contain 100400 billion stars and more than 100 billion planets.

The oldest stars in the Milky Way are nearly as old as the Universe itself and thus probably formed shortly after the Dark Ages of the Big Bang.

Earlier this year scientists were astonished to discover that the giant blackhole at the centre of the Milky Way, Sagittarius A, had suddenly become active after years of being dormant.

The blackhole, which is 4.3 million times bigger than the Sun, has been feeding itself at an unprecedented rate, consuming huge amounts of gas, dust and anything in its vicinity.

Scientists became curious when they discovered it glowing twice as brightly as normal, with a surreal light emanating outside its point of no return beyond which no matter can escape.

Andrea Ghez, UCLA professor of physics and astronomy: "We have never seen anything like this in the 24 years we have studied the supermassive black hole.

Read the original here:

Space shock: Astronomers discover stunning 'lighthouse beam' with answers to start of life - Express.co.uk

Posted in Astronomy | Comments Off on Space shock: Astronomers discover stunning ‘lighthouse beam’ with answers to start of life – Express.co.uk

What Astronomers Can Learn From Hot Jupiters, the Scorching Giant Planets of the Galaxy – Smithsonian

Posted: at 12:49 pm

In 1995, after years of effort, astronomers made an announcement: Theyd found the first planet circling a sun-like star outside our solar system. But that planet, 51 Pegasi b, was in a quite unexpected place it appeared to be just around 4.8 million miles away from its home star and able to dash around the star in just over four Earth-days. Our innermost planet, Mercury, by comparison, is 28.6 million miles away from the sun at its closest approach and orbits it every 88 days.

Whats more, 51 Pegasi b was big half the mass of Jupiter, which, like its fellow gas giant Saturn, orbits far out in our solar system. For their efforts in discovering the planet, Michel Mayor and Didier Queloz were awarded the 2019 Nobel Prize for Physics alongside James Peebles, a cosmologist. The Nobel committee cited their contributions to our understanding of the evolution of the universe and Earths place in the cosmos.

The phrase hot Jupiter came into parlance to describe planets like 51 Pegasi b as more and more were discovered in the 1990s. Now, more than two decades later, we know a total of 4,000-plus exoplanets, with many more to come, from a trove of planet-seeking telescopes in space and on the ground: the now-defunct Kepler; and current ones such as TESS, Gaia, WASP, KELT and more. Only a few more than 400 meet the rough definition of a hot Jupiter a planet with a 10-day-or-less orbit and a mass 25 percent or greater than that of our own Jupiter. While these close-in, hefty worlds represent about 10 percent of the exoplanets thus far detected, its thought they account for just 1 percent of all planets.

Still, hot Jupiters stand to tell us a lot about how planetary systems form and what kinds of conditions cause extreme outcomes. In a 2018 paper in the Annual Review of Astronomy and Astrophysics, astronomers Rebekah Dawson of the Pennsylvania State University and John Asher Johnson of Harvard University took a look at hot Jupiters and how they might have formed and what that means for the rest of the planets in the galaxy. Knowable Magazine spoke with Dawson about the past, present and future of planet-hunting, and why these enigmatic hot Jupiters remain important. This conversation has been edited for length and clarity.

What is a hot Jupiter?

A hot Jupiter is a planet thats around the mass and size of Jupiter. But instead of being far away from the sun like our own Jupiter, its very close to its star. The exact definitions vary, but for the purpose of the Annual Review article we say its a Jupiter within about 0.1 astronomical units of its star. An astronomical unit is the distance between Earth and the sun, so its about 10 times closer to its star or less than Earth is to the sun.

What does being so close to their star do to these planets?

Thats an interesting and debated question. A lot of these hot Jupiters are much larger than our own Jupiter, which is often attributed to radiation from the star heating and expanding their gas layers.

It can have some effects on what we see in the atmosphere as well. These planets are tidally locked, so that the same side always faces the star, and depending on how much the heat gets redistributed, the dayside can be much hotter than the nightside.

Some hot Jupiters have evidence of hydrogen gas escaping from their atmospheres, and some particularly hot-hot Jupiters show a thermal inversion in their atmosphere where the temperature increases with altitude. At such high temperatures, molecules like water vapor and titanium oxide and metals like sodium and potassium in the gas phase can be present in the atmosphere.

Between 2009 and 2018, NASA's Kepler space telescope discovered thousands of planets. But exoplanetsplanets outside the solar systemappeared in science fiction before they appeared in telescopes. Astronomers in the early decades of the twentieth century spent entire careers searching for planets in other stellar systems. In The Lost Planets, John Wenz offers an account of the pioneering astronomer Peter van de Kamp, who was one of the first to claim discovery of exoplanets.

What might explain how a planet ends up so close to its star?

There are three categories of models that people have come up with. One is that maybe these planets form close to their stars to begin with. Originally, people sort of dismissed this. But more recently, astronomers have been taking this theory a bit more seriously as more studies and simulations have shown the conditions under which this could happen.

Another explanation is that during the stage when the planetary system was forming out of a disk of gas and dust, the Jupiter was pulled in closer to its star.

The last explanation is that the Jupiter could have started far away from the star and then gotten onto a very elliptical orbit probably through gravitational interactions with other bodies in the system so that it passed very close to the host star. It got so close that the star could raise strong tides on the Jupiter, just like the moon raises tides on the Earth. That could shrink and circularize its orbit so that it ended up close to the star, in the position we observe.

Are there things we see in the planetary systems that have hot Jupiters that other systems dont have?

There are some trends. One is that most hot Jupiters dont have other small planets nearby, in contrast to other types of planetary systems we see. If we see a small hot planet, or if we see a gas giant thats a bit farther away from its star, it often has other planets nearby. So hot Jupiters are special in being so lonely.

The loneliness trend ties in to how hot Jupiters formed so close to their stars. In the scenario where the planet gets onto an elliptical orbit that shrinks and circularizes, that would probably wipe out any small planets in the way. That said, there are a few systems where a hot Jupiter does have a small planet nearby. With those, its not a good explanation.

Planetary systems with hot Jupiters often have other giant planets in the system farther away out beyond where the Earth is, typically. Perhaps, if hot Jupiters originated from highly eccentric orbits, those faraway planets are responsible for exciting their eccentricities to begin with. Or there could have been responsible planets that got ejected from the system in the process, so we dont necessarily have to still see them in the system.

Another big trend is that hot Jupiters tend to be around stars that are more metal-rich. Astronomers refer to metals as any element heavier than hydrogen or helium. Theres more iron and other elements in the star, and we think that this may affect the disk of gas and dust that the planets formed out of. There are more solids available, and that could facilitate forming giant planets by providing material for their cores, which would then accrete gas and become gas giants.

Having more metals in the system could enable the creation of multiple giant planets. That could cause the type of gravitational interaction that would put the hot Jupiter onto a high eccentricity orbit.

Hot Jupiters like 51 Pegasi b were the first type of planet discovered around sun-like stars. What led to their discovery?

It occurred after astronomers started using a technique called the radial velocity method to look for extrasolar planets. They expected to find analogs to our own Jupiter, because giant planets like this would produce the biggest signal. It was a very happy surprise to find hot Jupiters, which produce an even larger signal, on a shorter timescale. It was a surprising but fortuitous discovery.

Can you explain the radial velocity method?

It detects the motion of the host star due to the planet. We often think of stars sitting still and theres a planet orbiting around it. But the star is actually doing its own little orbit around the center of mass between the two objects, and thats what the radial velocity method detects. More specifically, it detects the doppler shift of the stars light as it goes in its orbit and moves towards or away from us.

One of the other common ways to find planets is the transit method, which looks for the dimming of a stars light due to a planet passing in front of it. Its easier to find hot Jupiters than smaller planets this way because they block more of the stars light. And if they are close to the star they transit more frequently in a given period of time, so were more likely to detect them.

In the 1990s, many of the exoplanets astronomers discovered were hot Jupiters. Since then, weve found more and different kinds of planets hot Jupiters are relatively rare compared with Neptune-sized worlds and super-Earths. Why is it still important to find and study them?

One big motivation is the fact that theyre out there and that they werent predicted from our theories of how planetary systems form and evolve, so there must be some major pieces missing in those theories.

Those missing ingredients probably affect many planetary systems even if the outcome isnt a hot Jupiter a hot Jupiter, we think, is probably an extreme outcome. If we dont have a theory that can make hot Jupiters at all, then were probably missing out on those important processes.

A helpful thing about hot Jupiters is that they are a lot easier to detect and characterize using transits and radial velocity, and we can look at the transit at different wavelengths to try to study the atmosphere. They are really helpful windows into planet characterization.

Hot Jupiters are still going to always be the planets we can probe in the most detail. So even though people dont necessarily get excited about the discovery of a new hot Jupiter anymore, increasing the sample lets us gather more details about their orbits, compositions, sizes or what the rest of their planetary system looks like, to try to test theories of their origins. In turn, theyre teaching us about processes that affect all sorts of planetary systems.

What questions are we going to be able to answer about hot Jupiters as the next-generation observatories come up, such as the James Webb Space Telescope and larger ground-based telescopes?

With James Webb, the hope is to be able to characterize a huge number of hot Jupiters atmospheric properties, and these might be able to help us test where they formed and what their formation conditions were like. And my understanding is that James Webb can study hot Jupiters super quickly, so it could get a really big sample of them and help statistically test some of these questions.

The Gaia mission will be really helpful for characterizing the outer part of their planetary systems and in particular can help us measure whether massive and distant planets are in the same plane as a transiting hot Jupiter; different theories predict differently on whether that should be the case. Gaia is very special in being able to give us three-dimensional information, when usually we have only a two-dimensional view of the planetary system.

TESS [the Transiting Exoplanet Survey Satellite space telescope] is going on right now and its discoveries are around really bright stars, so it becomes possible to study the whole system that has a hot Jupiter using the radial velocity method to better characterize the overall architecture of the planetary system. Knowing whats farther out will help us test some of the ideas about hot Jupiter origins.

TESS and other surveys also have more young stars in the sample. We can see what the occurrence rate and properties are of hot Jupiters closer to when they formed. That, too, will help us distinguish between different formation scenarios.

Theyre alien worlds to us, but what can hot Jupiters tell us about the origins of our own solar system? These days, many missions are concentrating on Earth-sized planets.

What were all still struggling to see is: Where does our solar system fit into a bigger picture of how planetary systems form and evolve, and what produces the diversity of planetary systems we see? We want to build a very complete blueprint that can explain everything from our solar system, to a system with hot Jupiters, to a system more typical of what [the retired space telescope] Kepler found, which are compact, flat systems of a bunch of super-Earths.

We still dont have a great explanation for why our solar system doesnt have a hot Jupiter and other solar systems do. Wed like some broad theory that can explain all types of planetary systems that weve observed. By identifying missing processes or physics in our models of planet formation that allow us to account for hot Jupiters, were developing that bigger picture.

Do you have any other thoughts?

The one thing I might add is that, as we put together all the evidence for our review, we found that none of the theories can explain everything. And that motivates us to believe that theres probably multiple ways to make a hot Jupiter so its all the more important to study them.

Knowable Magazine is an independent journalistic endeavor from Annual Reviews.

Read the rest here:

What Astronomers Can Learn From Hot Jupiters, the Scorching Giant Planets of the Galaxy - Smithsonian

Posted in Astronomy | Comments Off on What Astronomers Can Learn From Hot Jupiters, the Scorching Giant Planets of the Galaxy – Smithsonian

Space discovery: Astronomers warn of colossal galaxy explosion heading towards Earth – Express.co.uk

Posted: at 12:49 pm

Early humans may have witnessed such an explosion over 3.5 million years ago - and it could happen again very soon according to researchers. Scientists call the cosmic gas orbs the Fermi bubbles and even though theyre a few million years old there is a mystery as to how the bubbles first formed. Researchers from the University of Sydney reconstructed a plausible explanation for the bubbles birth, putting it down to a gigantic explosion.

The Fermi bubbles were created by an epic flare of hot nuclear energy that shot out the galaxys poles roughly 3.5 million years ago.

A beam from the explosion shot into space for hundreds of thousands of light-years.

Lead study author Joss Bland-Hawthorn told Live Science, the effect would have shone out of the galaxys centre for 300,000 years.

Mr Bland-Hawthorn also noted that a similar explosion or flare could have occurred 10 million years ago and could well be heading towards Earth.

He said: It's plausible that one explosion took place 10 million years ago, and the jet is now arriving in our direction.

Speaking on the flare, the director of the Sydney Institute for Astronomy and his team calculated the blast may have been visible to early humans.

He said: It's an amazing thought that, when cave people walked the Earth, if they'd looked off in the direction of the galactic centre, they'd have seen some kind of giant ball of heated gas.

JUST IN:Building blocks of DNA could have been present in gas clouds in space

Researchers looked to the Hubble Space Telescope of the Magellanic Stream to date the explosion.

The Magellanic stream is a 600,000-light-year-wide arc of gas trailing behind two dwarf galaxies that orbit the Milky Way.

From the Earth, the Magellanic Stream spreads across half of the night sky as it surges through space some 200,000 light-years away.

It is still close enough for neighbouring galaxies to feel the heat of particularly violent eruptions from our galaxys central black hole, according to the researchers.

DON'T MISS

Asteroid warning: From boiling alive to ruptured ears - strike horror(NEWS)Who do we blame for climate change? Expert says blame 'big companies'(NEWS)Jet suit breakthrough: Buck Rogers in the 21st Century(NEWS)

While most of the hydrogen gas makes up the Magellanic Stream is very cold, recent Hubble observations have revealed at least three large regions where the gas is unusually hot.

Those regions, incidentally, align with the north and south poles of the Milky Way's galactic centre.

According to Mr Bland-Hawthorn, thats a clear sign that those hot regions were toasted by an enormous flare-up of charged particles beaming out of our galaxy and into deep space.

He said: This can only be done radiatively from the monster at the galaxy's nucleus.

The scientist and his colleagues showed how such an explosion of energy, known as a Seyfert flare, could blast out of the centre and reach all the way to the hottest regions of the Magellanic stream.

The team calculated the explosion must have occurred between 2.5 and 4.5million years ago - a time when humanitys early ancestors were already walking the Earth.

While early humans may have seen the mysterious flare overhead, Mr Bland-Hawthorn believes it is unlikely they were impacted by its energy due to the earth's protective atmosphere.

e added how it was good news for humanity as research suggests more Seyflert flares could be on their way.

The scientist stated that flares can get trapped in the immediate vicinity of the back holes that made them for millions of years.

He added: But I think the most powerful bursts from our Sun would be about the same power so, bad for satellites and space walkers, but our atmosphere protects life pretty well."

Visit link:

Space discovery: Astronomers warn of colossal galaxy explosion heading towards Earth - Express.co.uk

Posted in Astronomy | Comments Off on Space discovery: Astronomers warn of colossal galaxy explosion heading towards Earth – Express.co.uk

Astronomer who saw Milky Way black hole flare thinks ancient aliens saw it – Inverse

Posted: at 12:49 pm

Down on Earth around 3.5 million years ago, humanity was starting to take its earliest forms in some regions of Africa. At the same time, the sky was bursting with radiation from an explosive flare that took place in the center of the Milky Way.

An international team of astronomers recently found evidence of the explosion, the impact of which extended across 200,000 light-years and released a flash of energy that shone out into space through the two poles of our galaxy. And while humans probably couldnt see this flare, if there are any intelligent beings in the rest of the galaxy, they may have caught a glimpse.

The study, published on Sunday in The Astrophysical Journal, is based on observations made by the Hubble Space Telescope that caught the afterglow of the flare.

Gerald Cecil, Ph.D., professor of physics and astronomy at the University of North Carolina and co-author of the study, believes that the flare was caused by gas and shattered stars falling into the supermassive black hole at the center of the Milky Way.

We then see this glowing light, Cecil tells Inverse. Although we dont have a direct view of the explosion in the center, we see its reflective light.

The new study is based on a 2013 discovery of the Magellanic Stream, a stream of gas clouds that extends over the Milky Way, as shown in the video above. Light from distant quasars, massive and extremely bright cosmic objects, passed through the stream on its way to Earth. The composition of the arc, which removed some parts of the quasar light, led the team to suspect that something was heating and lighting up the gas stream.

What the team managed to observe was the fading remnant of the explosion, which was much brighter when it occurred 3.5 million years ago.

The fire is over, and were looking at the glowing coals, Cecil says. A lightbulb burning out.

The researchers estimate that the blast may have lasted for 300,000 years but is no longer active today based on mathematical models of how the heated gas de-energized.

The supermassive black hole in the Milky Way is always flickering, if an asteroid fell in instead of dust, you might get a flare that lasts for hours, Cecil says.

The new findings suggest that our galaxy is more active than we had initially thought it to be. The Milky Way is known to have some low level activity but, according to Cecil, this new research suggests that it was perhaps a million times more active only a few million years ago than what astronomers believed in the past.

Other galaxies have this behavior, Cecil says. It puts the Milky Way into the mainstream.

Considering that this event took place only a couple of million years ago, an insignificant amount of time in the life of a galaxy, means that it may be one of many such episodes that have occurred over the lifetime of the Milky Way.

If we start thinking about the cumulative effects of those radiation, we have to incorporate them in the models of whats going on in the Milky Way, Cecil says. That hasnt been done reliably.

The new study casts the Milky Way in a new, perhaps brighter, light, as well as the activity of the black hole at its center, if it is in fact the culprit behind this relatively recent explosion. The team behind the research hopes to get a better understanding of the duration of the flare, and whether it flared back up again during that period or continued to fade gradually.

Another aspect of the findings that Cecil points out is that this galactic event may have been observed by other inhabitants of the Milky Way, which he strongly believes exist, and essentially synchronized everybodys clock to a point of reference in the galaxys timescale.

Here is an event thats galaxy wide, for wherever they are in the galaxy, Cecil says. There was an event, one that everyone could see.

Abstract: There is compelling evidence for a highly energetic Seyfert explosion (105657 erg) that occurred in the Galactic Centre a few million years ago. The clearest indications are the x-ray/-ray 10 kpc bubbles identified by the Rosat and Fermi satellites. In an earlier paper, we suggested another manifestation of this nuclear activity, i.e. elevated H emission along a section of the Magellanic Stream due to a burst (or flare) of ionizing radiation from Sgr A*. We now provide further evidence for a powerful flare event: UV absorption line ratios (in particular CIV/CII, Si IV/Si II) observed by the Hubble Space Telescope reveal that some Stream clouds towards both galactic poles are highly ionized by a source capable of producing ionization energies up to at least 50 eV. We show how these are clouds caught in a beam of bipolar, radiative ionization cones from a Seyfert nucleus associated with Sgr A*. In our model, the biconic axis is tilted by about 15 from the South Galactic Pole with an opening angle of roughly 60. For the Stream at such large Galactic distances (D > 75 kpc), nuclear activity is a plausible explanation for all of the observed signatures: elevated H emission and H ionization fraction (xe > 0.5), enhanced CIV/CII and Si IV/Si II ratios, and high CIV and Si IV column densities. Wind-driven shock cones are ruled out because the Fermi bubbles lose their momentum and energy to the Galactic corona long before reaching the Stream. Our time-dependent Galactic ionization model (stellar populations, hot coronal gas, cloud-halo interaction) is too weak to explain the Streams ionization. Instead, the nuclear flare event must have had a radiative UV luminosity close to the Eddington limit (fE 0.1 1). Our time-dependent Seyfert flare models adequately explain the observations and indicate the Seyfert flare event took place To = 3.5 1 Myr ago. The timing estimates are consistent with the mechanical timescales needed to explain the x-ray/-ray bubbles in leptonic jet/wind models ( 2 8 Myr).

The rest is here:

Astronomer who saw Milky Way black hole flare thinks ancient aliens saw it - Inverse

Posted in Astronomy | Comments Off on Astronomer who saw Milky Way black hole flare thinks ancient aliens saw it – Inverse

How Blind Astronomers Will Observe the Solar Eclipse – The Atlantic

Posted: August 6, 2017 at 3:41 am

Like millions of other people, Wanda Diaz Merced plans to observe the August 21 total solar eclipse, when the moons shadow will sweep across the sun and, for a few brief moments, coat parts of the United States in darkness. But she wont see it. Shell hear it.

Diaz Merced, an astrophysicist, is blind, with just 3 percent of peripheral vision in her right eye, and none in her left. She has been working with a team at Harvard University to develop a program that will convert sunlight into sound, allowing her to hear the solar eclipse. The sound will be generated in real time, changing as the dark silhouette of the moon appears over the face of the bright sun, blocking its light. Diaz Merced will listen in real time, toowith her students at the Athlone School for the Blind in Cape Town, South Africa, where she teaches astronomy.

Its an experience of a lifetime, and they deserve the opportunity, Diaz Merced said.

To capture the auditory version of this astronomical event, the team turned to a piece of technology measuring only a couple inches long: the Arduino, a cheap microcomputer popular with tech-savvy, DIY hobbyists. With a few attachments, Arduinos can be used to create all kinds of electronic devices that interact with the physical world, from the useful, like finger scanners that unlock garage doors, to the silly, like motion-detecting squirt guns. Diaz Merceds collaborators equipped an Arduino with a light-detecting sensor and speaker, and programmed it to convert light into a clicking noise. The pace of the clicks varies with the intensity of the sunlight hitting the sensor, speeding up as it strengthens and slowing down as it dims. In the moments of totality, when the suns outer atmosphere appears as a thin ring around the shadow of the moon, the clicks will be a second or more apart.

Allyson Bieryla, an astronomy lab and telescope manager at Harvard, will operate the Arduino from Jackson Hole, Wyoming, inside the path of totality. She will stream the audio on a website online, which Diaz Merced will open on her computer in Cape Town.

So far, Bieryla says, the real challenge has been trying to find a light sensor thats sensitive enough to get the variation in the eclipse. In totality, the sun will appear about as bright as a full moon at midnight. The team has tested the Arduino at night, under the moonlight, to make sure it can pick up the faint luminosity.

Diaz Merced, a postdoctoral fellow at the Office of Astronomy for Development in South Africa, was diagnosed with diabetes as a child. In her early 20s, when she was studying physics at the University of Puerto Rico, she was diagnosed with diabetic retinopathy, a complication of the disease that destroys blood vessels in the retina. Her vision began to deteriorate, and a failed laser surgery damaged her retinas further, she said. By her late 20s, she was almost completely blind. She recalls watching a partial solar eclipse in 1998 in Puerto Rico, when she still had some sight.

I was able to experience the wonderfulnessof the sun being dark, of having a black ball in the sky, she said. That is why it is important to use the sound in order to bring an experience that will bring that same feeling to people who do not see or are not visually oriented.

While Diaz Merced experiences the eclipse from a classroom in Cape Town, Tim Doucette will observe the event at a campground in Nebraska, smack-dab in the path of totality. Doucette is a computer programmer by day and an amateur astronomer by night. He runs a small observatory, Deep Sky, near his home in Nova Scotia in a sparsely populated area known for low light pollution and star-studded night skies.

Doucette is legally blind, and has about 10 percent of his eyesight. He had cataracts as a baby, a condition that clouds the lenses of the eye. To treat the disease, doctors surgically removed the lenses, leaving Doucette without the capacity to filter out certain wavelengths. His eyes are sensitive to ultraviolet and infrared light, and he wears sunglasses during the day to protect his retinas. Without shades, Doucette said he cant keep his eye open in the brightness of day. But at night, his sensitivity becomes an advantage. With the help of a telescope, Doucette can see the near-infrared light coming from stars and other objects in the sky better than most people.

My whole life, Ive always been asking people for help, saying, hey, what do you see? Doucette said. When I stargaze with people, the tables are reversed.

Doucette sees best at night, safe from the glare of the sun. He uses starlight to guide him during the short walk from his observatory to his home. When Im walking down the road, especially during the summer months, the Milky Way is just this incredible painting going from north to south, he said. Its millions and millions of points of light. Its like a tapestry of diamonds against a velvety background.

Doucette, armed with his camera equipment, will observe the eclipse with dozens of members of the Royal Astronomical Society of Canadas Halifax Center, an association of amateur and professional astronomers. He has only witnessed partial solar eclipses in the past. It should be quite interesting to see what the effect is because of my sensitivity, he said. During totality, when day becomes night, some objects in the sky may become visible, thanks to his sensitivity to their light.

Doucette will wear eclipse sunglasses over his regular pair. Eclipse glasses protect the eyes from sunlight so viewers can look directly at it without hurting their eyes, and they can be bought online for a few dollars. Doucette urged eclipse viewers to use them, citing stories hed heard of people looking at the sun during an eclipse and waking up blind the next morning, their retinas burned. The shades are necessary before and after totality, when the sun is only partially eclipsed and a thin crescent shines with typical intensity.

Once the eclipse is in totality for about two and a half minutes, Im told that its safe to take the glasses off, but Im not willing to risk it, Doucette said. Ill still keep my sunglasses on either way.

Original post:

How Blind Astronomers Will Observe the Solar Eclipse - The Atlantic

Posted in Astronomy | Comments Off on How Blind Astronomers Will Observe the Solar Eclipse – The Atlantic

In pictures: Astronomy Photographer of the Year 2017 – BBC News – BBC News

Posted: at 3:41 am


BBC News
In pictures: Astronomy Photographer of the Year 2017 - BBC News
BBC News
The shortlisted images in this year's Insight Astronomy Photographer of the Year have now been selected.

and more »

Read the original here:

In pictures: Astronomy Photographer of the Year 2017 - BBC News - BBC News

Posted in Astronomy | Comments Off on In pictures: Astronomy Photographer of the Year 2017 – BBC News – BBC News

Local astronomy professors share eclipse tips – Spartanburg Herald Journal

Posted: at 3:41 am

Zach Fox Staff Writer @ZachFoxSHJ

Local astronomy professors say Spartanburg County residents should at least try to get to the southern part of the county on Aug. 21 to experience the full solar eclipse.

The eclipse path runs through Spartanburg County, but only the southern and southwestern portions of the county will see 100 percent totality that Monday afternoon. Events are scheduled across the Upstate, and state public safety officials are preparing for increased traffic on state roads.

Astronomy professors Andy Leonardi of the University of South Carolina Upstate and Bill Yarborough of Converse College said the eclipse will be a once-in-a-lifetime sight.

What else will be visible in the sky during the eclipse?

Leonardi:Not so much when youre looking up at the sun and the moon itself. The wispy corona that will appear during the eclipse will be pronounced. The little extra bit of light will make the sky look a little different.

Yarborough:What you can see is whats called the suns corona. Surrounding the sun is a very tenuous region thats far, far hotter than the surface. It doesnt emit enough light for us to normally see it. Its like a huge, bright halo. When the moon completely blocks the disk of the sun we normally see, the corona will light up the sky. Its an absolutely incredible view.As far as planets or things of that sort, it wont quite be like a dark night. Itll be like dusk or sunset. Not quite dark enough to see a lot of planets and things like that.

What does it mean that Spartanburg isn't in the path of totality?

Yarborough:What that means for Spartanburg is, the sun will never be completely blocked. A little edge of sun will still be visible from behind the moon. Its still more than a 90 percent eclipse. At any point where the sun is even partially visible, its not safe for the naked eye.In that region, in totality, its safe to look at it without protection. You can briefly take (viewing glasses) off and look before you put them back on.

Is there any way, besides getting safety glasses, to prepare for the eclipse?

Leonardi:Even animals, youll start to hear nighttime animal sounds because they get fooled, too. Its so outside normal experience that you cant honestly prepare for it. Its not like when daytime turns to night, its much different than that.

What's the best way to enjoy the eclipse itself?

Leonardi: You definitely want to give yourself time before the eclipse to see the approach. The eclipse itself lasts for a couple of minutes, but you want to see all the subtle changes first. If they can tear their eyes away for those two minutes, take a little time to glance at the horizon because youll see some weird, unique effects. Youll see sort of sunset effects all across the horizon. ... I would just urge people to do it safely.

Yarborough: Probably the most important thing everyone knows is they need to protect their eyes. Looking up at the sun, even briefly, can do real damage to your eyes. Ordinary sunglasses simply will not protect their eyes from looking up at an eclipse.Its an exciting event, one everyone ought to see. For anybody whos interested, it (traveling to the area of totality) would be worth it. Once you get 10 miles or so south or southwest of Spartanburg, youll be in the edge of the total region. The difference will be noticeable. Anywhere in South Carolina will experience a partial eclipse, however, which is still a sight to see. It wont be something to forget.

More:

Local astronomy professors share eclipse tips - Spartanburg Herald Journal

Posted in Astronomy | Comments Off on Local astronomy professors share eclipse tips – Spartanburg Herald Journal

Great American Eclipse 101: Bill Nye and Two Astronomy Whiz Kids … – Parade

Posted: at 3:41 am

Magazine August 4, 2017 5:00 AM ByNeil Pond Parade @NeilPond More by Neil

Everyone will be looking up on Monday, August 21, when whats being called the Great American Eclipse sweeps across the U.S.

I really encourage you to be in a place where you can see the total solar eclipse, says Bill Nye, known as the Science Guy from his popular 1990s-era PBS kids show. This one moment where the Earth, moon and sun are in a lineit really is spectacular, says Nye, 61, who serves as the CEO of the Planetary Society in Pasadena, California, and is star of Bill Nye Saves the World on Netflix.

Check out these eclipse must-knows from Nye and astronomy whiz kids Cannan and Carson Huey-You.

Related: Cannan and Carson Huey-You Interview Bill Nye the Science Guy

The sunlight filtering around the advancing moon creates alternating bands of light and dark on the ground racing across the land. Its crazy; theyre several football fields wide, and they move over you. Its otherworldly and spooky, Nye says.

This aura of gasses that surrounds the sun and shoots out into space for millions of miles is spectacularly visible to the unaided eye as a brilliant, glowing halo during the total eclipse.

The amount of time it will take for the eclipse to zoom across the entire continent.

The longest anyone, anywhere will be able to witness its totalitythats in Hopkinsville, Kentucky.

Unlike most other total eclipses, the 2017 eclipse will cross directly overheador nearbymany major population areas. Its going right across the United States, Nye says. Take a felt-tip marker and draw from Oregon to Georgia, and there it is.

Thats how long ago the previous coast-to-coast solar eclipse was last seen in the U.S. There will be another total solar eclipse in July 2019, but it will be visible only in parts of Argentina and Chile. The truth is, eclipses arent all that rare. Total solar eclipses occur every two years, says Nye, author of the just-released Everything All at Once. They come in pairs. Theyre more frequent than presidential elections! Most are visible only to relatively few people or from places where many people cant easily goremote mountaintops, the middle of an ocean, unpopulated areas hundreds or thousands of miles away from anything else. That makes the 2017 eclipse extra special.

During the total eclipse, as the light from the sun is blocked, these points of light begin to appear as sunlight streams through the valleys of the moons horizon.

In a total eclipse, the moons shadow flies across the face of the planet at supersonic speed. Thats fastalmost as fast as it took Carson Huey-You and his younger brother, Cannan, science-minded kid geniuses in the Dallas area, to zip far ahead academically of most kids their age.

Carson, 15, enrolled in Texas Christian University when he was 11 and graduated in May with a degree in physics and minors in math and Chinese. He plans to continue with graduate studies in physics toward a masters degree and ultimately a doctorate. Cannan, 11, will enter TCU this fall to study engineering and astrophysics.

Here are 10 things Carson and Cannan want you to know about the upcoming eclipse.

Read the original:

Great American Eclipse 101: Bill Nye and Two Astronomy Whiz Kids ... - Parade

Posted in Astronomy | Comments Off on Great American Eclipse 101: Bill Nye and Two Astronomy Whiz Kids … – Parade

NASA has selected nine proposals for Explorers Program … – Astronomy Magazine

Posted: at 3:41 am

NASA has selected nine proposals in its Explorers Program to study the Sun and general space environment. There are five Heliophysics Small Explorer mission proposals, two Explorer Missions of Opportunity Small Complete Mission (SCM) proposals, and one Partner Mission of Opportunity (PMO).

According to the press release, the Heliophysics Small Explorer missions and Explorer Missions of Opportunity SCM missions will be have specific explorations, including weather in the near-Earth environment, magnetic energy, solar wind, and heating and energy released in the atmosphere. The mission in the PMO category will be more focused on creating space instruments.

Ultimately, these missions will all help scientists better understand the influence of the Sun on our solar system, including the planets and the space between them.

The Heliophysics Small explorer proposals will be given $1.25 million for an 11-month mission concept study. Those missions are: Mechanisms of Energetic Mass Ejection eXplorer (MEME-X), Focusing Optics X-ray Solar Image (FOXSI), Multi-Slit Solar Explorer (MUSE), The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS), and the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission.

MEME-X will study how charged particles leave Earths atmosphere, while TRACERS will study Earths magnetopause, which is the boundary between our planets magnetosphere and the incoming charged particles of the solar wind. FOXSI and MUSE will focus on the Suns atmosphere and the mysterious solar corona, which is only visible from Earth during a total solar eclipse. PUNCH will take a closer look at the solar wind.

The two Each Mission of Opportunity SCM proposals will be given $400,000 for an 11-month concept study. Those proposals are: the Sun Radio Interferometer Space Experiment (SunRISE) and the Atmospheric Waves Experiment (AWE) mission.

SunRISE will create a radio telescope array from miniature satellites to study how the Sun releases particles into space. AWE will look back at Earth to study a phenomenon known as gravity waves, which transport energy throughout a planets atmosphere.

The final proposal is in the Partner Mission of Opportunity category and will study three instruments on the Turbulence Heating ObserveR (THOR) mission, a mission that the European Space Agency is considering. THOR looks at how particles in space gain and lose energy.

See the article here:

NASA has selected nine proposals for Explorers Program ... - Astronomy Magazine

Posted in Astronomy | Comments Off on NASA has selected nine proposals for Explorers Program … – Astronomy Magazine

Astronomers discover ‘heavy metal’ supernova rocking out – Astronomy Now Online

Posted: at 3:41 am

This artists impression of SN 2017egm shows the power source for this extraordinarily bright supernova. The explosion was triggered by a massive star that collapsed to form a neutron star with an extremely strong magnetic field and rapid spin, called a magnetar. Debris from the supernova explosion is shown in blue and the magnetar is shown in red. Credit: M. Weiss/CfA

Many rock stars dont like to play by the rules, and a cosmic one is no exception. A team of astronomers has discovered that an extraordinarily bright supernova occurred in a surprising location. This heavy metal supernova discovery challenges current ideas of how and where such super-charged supernovas occur.

Supernovas are some of the most energetic events in the Universe. When a massive star runs out of fuel, it can collapse onto itself and create a spectacular explosion that briefly outshines an entire galaxy, dispersing vital elements into space.

In the past decade, astronomers have discovered about fifty supernovas, out of the thousands known, that are particularly powerful. These explosions are up to 100 times brighter than other supernovas caused by the collapse of a massive star.

Following the recent discovery of one of these superluminous supernovas, a team of astronomers led by Matt Nicholl from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., has uncovered vital clues about where some of these extraordinary objects come from.

Cambridge Universitys Gaia Science Alerts team discovered this supernova, dubbed SN 2017egm, on May 23, 2017 with the European Space Agencys Gaia satellite. A team led by Subo Dong of the Kavli Institute for Astronomy and Astrophysics at Peking University used the Nordic Optical Telescope to identify it as a superluminous supernova.

SN 2017egm is located in a spiral galaxy about 420 million light years from Earth, making it about three times closer than any other superluminous supernova previously seen. Dong realized that the galaxy was very surprising, as virtually all known superluminous supernovas have been found in dwarf galaxies that are much smaller than spiral galaxies like the Milky Way.

Building on this discovery, the CfA team found that SN 2017egms host galaxy has a high concentration of elements heavier than hydrogen and helium, which astronomers call metals. This is the first clear evidence for a metal-rich birthplace for a superluminous supernova. The dwarf galaxies that usually host superluminous supernovas are known to have a low metal content, which was thought to be an essential ingredient for making these explosions.

Superluminous supernovas were already the rock stars of the supernova world, said Nicholl. We now know that some of them like heavy metal, so to speak, and explode in galaxies like our own Milky Way.

If one of these went off in our own Galaxy, it would be much brighter than any supernova in recorded human history and would be as bright as the full Moon, said co-author Edo Berger, also of the CfA. However, theyre so rare that we probably have to wait several million years to see one.

The CfA researchers also found more clues about the nature of SN 2017egm. In particular, their new study supports the idea that a rapidly spinning, highly magnetized neutron star, called a magnetar, is likely the engine that drives the incredible amount of light generated by these supernovas.

While the brightness of SN 2017egm and the properties of the magnetar that powers it overlap with those of other superluminous supernovas, the amount of mass ejected by SN 2017egm may be lower than the average event. This difference may indicate that the massive star that led to SN 2017egm lost more mass than most superluminous supernova progenitors before exploding. The spin rate of the magnetar may also be slower than average.

These results show that the amount of metals has at most only a small effect on the properties of a superluminous supernova and the engine driving it. However, the metal-rich variety occurs at only about 10% of the rate of the metal-poor ones. Similar results have been found for bursts of gamma rays associated with the explosion of massive stars. This suggests a close association between these two types of objects.

From July 4th, 2017 until September 16th, 2017 the supernova is not observable because it is too close to the Sun. After that, detailed studies should be possible for at least a few more years.

This should break all records for how long a superluminous supernova can be followed, said co-author Raffaella Margutti of Northwestern University in Evanston, Illinois. Im excited to see what other surprises this object has in store for us.

The CfA team observed SN 2017egm on June 18th with the 60-inch telescope at the Smithsonian Astrophysical Observatorys Fred Lawrence Whipple Observatory in Arizona.

A paper by Matt Nicholl describing these results was recently accepted for publication in The Astrophysical Journal Letters, and is available online. In addition to Berger and Margutti, the co-authors of the paper are Peter Blanchard, James Guillochon, and Joel Leja, all of the CfA, and Ryan Chornock of Ohio University in Athens, Ohio.

A copy of the paper isavailable online.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Read more:

Astronomers discover 'heavy metal' supernova rocking out - Astronomy Now Online

Posted in Astronomy | Comments Off on Astronomers discover ‘heavy metal’ supernova rocking out – Astronomy Now Online

Page 89«..1020..88899091..100..»