Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar – Nature.com

Posted: September 27, 2022 at 8:56 am

Baker, V. R. Water and the Martian landscape. Nature 412, 228236 (2001).

ADS CAS PubMed Google Scholar

Boynton, W. et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 8185 (2002).

ADS CAS PubMed Google Scholar

Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. Recent ice ages on Mars. Nature 426, 797802 (2003).

ADS CAS PubMed Google Scholar

Byrne, S. et al. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 16741676 (2009).

ADS CAS PubMed Google Scholar

Audouard, J. et al. Water in the Martian regolith from OMEGA/Mars Express. J. Geophys. Res. Planets 119, 19691989 (2014).

ADS CAS Google Scholar

Holt, J. W. et al. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 12351238 (2008).

ADS CAS PubMed Google Scholar

Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490493 (2018).

ADS CAS PubMed Google Scholar

Picardi, G. et al. Radar soundings of the subsurface of Mars. Science 310, 19251928 (2005).

ADS CAS PubMed Google Scholar

Hamran, S.-E. et al. Radar imager for Mars subsurface experimentRIMFAX. Space Sci. Rev. 216, 128 (2020).

ADS Google Scholar

Zhou, B. et al. The Mars rover subsurface penetrating radar onboard Chinas Mars 2020 mission. Earth and Planetary Physics 4, 345354 (2020).

ADS Google Scholar

Sholes, S. F., Dickeson, Z. I., Montgomery, D. R. & Catling, D. C. Where are Mars hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J. Geophys. Res. Planets 126, e2020JE006486 (2021).

ADS Google Scholar

Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. Planets 107, 4.14.25 (2002).

Google Scholar

Tanaka, K. L., Skinner, J. A., Hare, T. M., Joyal, T. & Wenker, A. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. Planets 108, 8043 (2003).

Fa, W., Zhu, M., Liu, T. & Plescia, J. B. Regolith stratigraphy at the ChangE3 landing site as seen by lunar penetrating radar. Geophys. Res. Lett. 42, 10179 (2015).

Google Scholar

Xiao, L. et al. A young multilayered terrane of the northern Mare Imbrium revealed by ChangE-3 mission. Science 347, 12261229 (2015).

ADS CAS PubMed Google Scholar

Zhang, J. et al. Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proc. Natl Acad. Sci. USA 112, 53425347 (2015).

ADS CAS PubMed PubMed Central Google Scholar

Zhang, J. et al. Lunar regolith and substructure at ChangE-4 landing site in South PoleAitken basin. Nat. Astron. 5, 2530 (2021).

ADS Google Scholar

Tanaka, K. L. et al. Geologic Map of Mars: US Geological Survey Scientific Investigations Map 3292 Pamphlet 43 (US Geological Survey, 2014).

Tanaka, K. L. & Scott, D. H. Geologic Map of the Polar Regions of Mars (US Geological Survey, 1987).

Hiesinger, H. & Head III, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter laser altimeter and Mars Orbiter camera data. J. Geophys. Res. Planets 105, 1199912022 (2000).

ADS Google Scholar

Ivanov, M. A., Hiesinger, H., Erkeling, G. & Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: evidence for the ancient ocean. Icarus 228, 121140 (2014).

ADS Google Scholar

Mills, M. M., McEwen, A. S. & Okubo, C. H. A preliminary regional geomorphologic map in Utopia Planitia of the Tianwen1 Zhurong landing region. Geophys. Res. Lett. 48, e2021GL094629 (2021).

ADS Google Scholar

Wu, X. et al. Geological characteristics of Chinas Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 370, 114657 (2021).

Google Scholar

Ye, B. et al. Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet. Sci. Lett. 576, 117199 (2021).

CAS Google Scholar

Zhao, J. et al. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys. Res. Lett. 48, e2021GL094903 (2021).

Platz, T. & Michael, G. Eruption history of the Elysium volcanic province, Mars. Earth Planet. Sci. Lett. 312, 140151 (2011).

ADS CAS Google Scholar

Susko, D. et al. A record of igneous evolution in Elysium, a major Martian volcanic province. Sci. Rep. 7, 43177 (2017).

ADS CAS PubMed PubMed Central Google Scholar

Russell, P. S. & Head, J. W. ElysiumUtopia flows as megalahars: a model of dike intrusion, cryosphere cracking, and watersediment release. J. Geophys. Res. Planets 108, 5064 (2003).

Hobiger, M. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat. Commun. 12, 6756 (2021).

ADS CAS PubMed PubMed Central Google Scholar

Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202 (2012).

Garvin, J., Sakimoto, S. & Frawley, J. Craters on Mars: global geometric properties from gridded MOLA topography. Sixth Int. Conf. on Mars abstr. 3277 (2003); http://www.lpi.usra.edu/meetings/sixthmars2003/pdf/3277.pdf

Clifford, S. M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. Planets 98, 1097311016 (1993).

ADS CAS Google Scholar

McQueen, K. G. & Scott, K. M. Rock weathering and structure of the regolith. Regolith Sci. 1, 105126 (2008).

Google Scholar

Golombek, M. et al. Geology of the InSight landing site on Mars. Nat. Commun. 11, 1014 (2020).

ADS CAS PubMed PubMed Central Google Scholar

Niu, S., Zhang, F., Di, K., Gou, S. & Yue, Z. Layered ejecta craters in the candidate landing areas of Chinas first Mars mission (Tianwen-1): implications for subsurface volatile concentrations. J. Geophys. Res. Planets 127, e2021JE007089 (2022).

ADS Google Scholar

Forget, F., Haberle, R., Montmessin, F., Levrard, B. & Head, J. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368371 (2006).

ADS CAS PubMed Google Scholar

Levy, J. S. et al. Surface boulder banding indicates Martian debris-covered glaciers formed over multiple glaciations. Proc. Natl Acad. Sci. USA 118, e2015971118 (2021).

Chevrier, V. F., Rivera-Valentn, E. G., Soto, A. & Altheide, T. S. Global temporal and geographic stability of brines on present-day Mars. Planetary Sci. J. 1, 64 (2020).

ADS Google Scholar

Mellon, M. T. et al. Ground ice at the Phoenix landing site: stability state and origin. J. Geophys. Res. Planets 114, E00E07 (2009).

Vincendon, M. et al. Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010).

Morgan, G. A. et al. Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nat. Astron. 5, 230236 (2021).

ADS Google Scholar

Mellon, M. T. & Sizemore, H. G. The history of ground ice at Jezero Crater Mars and other past, present, and future landing sites. Icarus 371, 114667 (2022).

Google Scholar

Liu, Y. & Li, B. Streaming orthogonal prediction filter in the t-x domain for random noise attenuation. Geophysics 83, F41F48 (2018).

Google Scholar

Li, C. & Zhang, J. Velocity analysis using separated diffractions for lunar penetrating radar obtained by Yutu-2 rover. Remote Sens. 13, 1387 (2021).

ADS Google Scholar

Fomel, S., Landa, E. & Taner, M. T. Poststack velocity analysis by separation and imaging of seismic diffractions. Geophysics 72, U89U94 (2007).

ADS Google Scholar

Decker, L., Merzlikin, D. & Fomel, S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation. Geophysics 82, U25U35 (2017).

ADS Google Scholar

Giannakis, I., Zhou, F., Warren, C. & Giannopoulos, A. Inferring the shallow layered structure at the ChangE4 landing site: a novel interpretation approach using lunar penetrating radar. Geophys. Res. Lett. 48, e2021GL092866 (2021).

ADS Google Scholar

Chen, Z., Fomel, S. & Lu, W. Accelerated plane-wave destruction. Geophysics 78, V1V9 (2013).

ADS Google Scholar

Fomel, S. Applications of plane-wave destruction filters. Geophysics 67, 19461960 (2002).

ADS Google Scholar

Lv, W., Li, C., Song, H., Zhang, J. & Lin, Y. Comparative analysis of reflection characteristics of lunar penetrating radar data using numerical simulations. Icarus 350, 113896 (2020).

Google Scholar

Zhang, X. et al. Self-organization characteristics of lunar regolith inferred by Yutu-2 lunar penetrating radar. Remote Sens. 13, 3017 (2021).

ADS Google Scholar

Lai, J. et al. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside. Nat. Commun. 11, 3426 (2020).

ADS PubMed PubMed Central Google Scholar

Mhll, D. V. & Haeberli, W. Thermal characteristics of the permafrost within an active rock glacier (Murtl/Corvatsch, Grisons, Swiss Alps). J. Glaciol. 36, 151158 (1990).

ADS Google Scholar

Sun, Q. et al. Thermal properties of sandstone after treatment at high temperature. Int. J. Rock Mech. Min. Sci. 85, 6066 (2016).

Google Scholar

Egea-Gonzalez, I. et al. Regional heat flow and subsurface temperature patterns at Elysium Planitia and Oxia Planum areas, Mars. Icarus 353, 113379 (2021).

Google Scholar

More:

Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar - Nature.com

Related Posts