Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition | Communications Earth &…

Posted: February 21, 2022 at 6:02 pm

Drewry, D. J., Jordan, S. R. & Jankowski, E. Measured properties of the antarctic ice sheet: surface configuration, ice thickness, volume and bedrock characteristics. Ann. Glaciol. 3, 8391 (1982).

Google Scholar

Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 19792017. Proc. Natl Acad. Sci. USA 116, 10951103 (2019).

CAS Google Scholar

Assmann, K. M. et al. Variability of circumpolar deep water transport onto the amundsen sea continental shelf through a shelf break trough. J. Geophys. Res.: Oceans 118, 66036620 (2013).

Google Scholar

Walker, D. P., Jenkins, A., Assmann, K. M., Shoosmith, D. R. & Brandon, M. A. Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. J. Geophys. Res.: Oceans 118, 29062918 (2013).

Google Scholar

Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957960 (1996).

Google Scholar

Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci. 4, 519523 (2011).

CAS Google Scholar

Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geosci. 11, 733738 (2018).

CAS Google Scholar

Joughin, I. & Alley, R. B. Stability of the West Antarctic ice sheet in a warming world. Nature Geosci. 4, 506513 (2011).

CAS Google Scholar

Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 4348 (2017).

CAS Google Scholar

Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329332 (2009).

CAS Google Scholar

Sutter, J. et al. Modelling the Antarctic Ice Sheet across the mid-Pleistocene transitionimplications for Oldest Ice. Cryosphere 13, 20232041 (2019).

Google Scholar

Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene-Oligocene transition. Geology 36, 251254 (2008).

CAS Google Scholar

Westerhold, T. et al. An astronomically dated record of Earths climate and its predictability over the last 66 million years. Science 369, 13831387 (2020).

CAS Google Scholar

Hutchinson, D. K. et al. The EoceneOligocene transition: a review of marine and terrestrial proxy data, models and modeldata comparisons. Clim. Past 17, 269315 (2021).

Google Scholar

Passchier, S., Ciarletta, D. J., Miriagos, T. E., Bijl, P. K. & Bohaty, S. M. An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition. Geol. Soc. Am. Bull. 129, 318330 (2017).

Google Scholar

Galeotti, S. et al. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science 352, 7680 (2016).

CAS Google Scholar

OBrien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl Acad. Sci. USA 117, 2530225309 (2020).

Google Scholar

Plike, H. et al. The heartbeat of the oligocene climate system. Science 314, 18941898 (2006).

Google Scholar

Bijl, P. K. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, AntarcticaPart 2: Insights from OligoceneMiocene dinoflagellate cyst assemblages. Clim. Past 14, 10151033 (2018).

Google Scholar

Olivetti, V. et al. Evidence of a full West Antarctic Ice Sheet back to the early Oligocene: insight from double dating of detrital apatites in Ross Sea sediments. Terra Nova 27, 238246 (2015).

Google Scholar

Hochmuth, K. & Gohl, K. Seaward growth of Antarctic continental shelves since establishment of a continent-wide ice sheet: Patterns and mechanisms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 520, 4454 (2019).

Google Scholar

Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the EoceneOligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

Google Scholar

Kennedy-Asser, A. T. et al. Changes in the high-latitude Southern Hemisphere through the EoceneOligocene transition: a modeldata comparison. Clim. Past 16, 555573 (2020).

Google Scholar

Batchelor, C. L. & Dowdeswell, J. A. Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins. Marine Geol. 363, 6592 (2015).

Google Scholar

Batchelor, C. L., Dowdeswell, J. A. & Ottesen, D. In Submarine Geomorphology (eds Aaron Micallef, Sebastian Krastel, & Alessandra Savini) 207234 (Springer International Publishing, 2018).

Faugres, J. C. & Stow, D. A. V. In Developments in Sedimentology Vol. 60 (eds. M. Rebesco & A. Camerlenghi) 257, 259288 (Elsevier, 2008).

Knutz, P. C., Hopper, J. R., Gregersen, U., Nielsen, T. & Japsen, P. A contourite drift system on the Baffin BayWest Greenland margin linking Pliocene Arctic warming to poleward ocean circulation. Geology 43, 907910 (2015).

Google Scholar

Rebesco, M., Hernndez-Molina, F. J., Van Rooij, D. & Whlin, A. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Marine Geol. 352, 111154 (2014).

Google Scholar

Faugres, J. C., Stow, D. A. V., Imbert, P. & Viana, A. R. Seismic features diagnostic of contourite drifts. Marine Geol. 162, 138 (1999).

Google Scholar

Preu, B. et al. Morphosedimentary and hydrographic features of the northern Argentine margin: The interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep Sea Rese. Part I: Oceanogr. Res. Pap. 75, 157174 (2013).

Google Scholar

Gruetzner, J., Uenzelmann-Neben, G. & Franke, D. Variations in bottom water activity at the southern Argentine margin: indications from a seismic analysis of a continental slope terrace. Geo Marine Lett. 31, 405417 (2011).

Google Scholar

Gruetzner, J., Uenzelmann-Neben, G. & Franke, D. Variations in sediment transport at the central Argentine continental margin during the Cenozoic. Geochem. Geophys. Geosyst. 13, Q10003 (2012).

Google Scholar

Cossu, R. & Wells, M. G. The evolution of submarine channels under the influence of Coriolis forces: experimental observations of flow structures. Terra Nova 25, 6571 (2013).

Google Scholar

Cossu, R., Wells, M. G. & Whlin, A. K. Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems. J. Geophys. Res. 115, C11016 (2010).

Google Scholar

Gohl, K. et al. Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic West Antarctic ice sheet. Marine Geol. 344, 115131 (2013).

Google Scholar

Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 8186 (2020).

CAS Google Scholar

Gohl, K. et al. Evidence for a Highly Dynamic West Antarctic Ice Sheet During the Pliocene. Geophys. Res. Lett. 48, e2021GL093103 (2021).

Google Scholar

Klages, J. et al. West Antarctic archipelago covered by cool-temperate forests during early Oligocene glaciation. in EGU General Assembly 2021, https://doi.org/10.5194/egusphere-egu21-1538 (online, 2021).

Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J. & Sangiorgi, F. Stratigraphic calibration of OligoceneMiocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal. J. Micropalaeontol. 37, 105138 (2018).

Google Scholar

Clowes, C. D., Hannah, M. J., Wilson, G. J. & Wrenn, J. H. Marine palynostratigraphy and new species from the Cape Roberts drill-holes, Victoria land basin, Antarctica. Marine Micropaleontol. 126, 6584 (2016).

Google Scholar

Hochmuth, K. et al. Combined palaeotopography and palaeobathymetry of the Antarctic continent and the Southern Ocean since 34 Ma. https://doi.org/10.1594/PANGAEA.918663 (PANGAEA, 2020).

Coenen, J. J. et al. Paleogene Marine and Terrestrial Development of the West Antarctic Rift System. Geophys. Res. Lett. 47, e2019GL085281 (2020).

Google Scholar

Cossu, R. & Wells, M. G. Coriolis forces influence the secondary circulation of gravity currents flowing in large-scale sinuous submarine channel systems. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL044296 (2010).

Presti, M., De Santis, L., Brancolini, G. & Harris, P. T. Continental shelf record of the East Antarctic Ice Sheet evolution: seismo-stratigraphic evidence from the George V Basin. Quaternary Sci. Rev. 24, 12231241 (2005).

Google Scholar

Presti, M., De Santis, L., Busetti, M. & Harris, P. T. Late Pleistocene and Holocene sedimentation on the George V Continental Shelf, East Antarctica. Deep Sea Res. Part II: Top. Stud. Oceanogr. 50, 14411461 (2003).

Google Scholar

Rintoul, S. R., Hughes, C. W. & Olbers, D. In Ocean Circulation and Climate Vol. 77 (eds. G. Siedler, J. A. Church, & J. Gould) Ch. 4.6, 271302 (Academic Press, 2001).

Sranne, M. & Nz Abeigne, C.-R. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa): Consequences for sedimentation and southeast Atlantic upwelling. Sediment. Geol. 128, 179199 (1999).

Google Scholar

Yoon, S. H. & Chough, S. K. Sedimentary characteristics of Late Pleistocene bottom-current deposits, Barents Sea slope off northern Norway. Sediment. Geol. 82, 3345 (1993).

Google Scholar

Verdicchio, G. & Trincardi, F. In Developments in Sedimentology Vol. Volume 60 (eds. M. Rebesco & A. Camerlenghi) 409433 (Elsevier, 2008).

Rocchi, S., LeMasurier, W. E. & Di Vincenzo, G. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geol. Soc. Am. Bull. 118, 9911005 (2006).

Google Scholar

Wilch, T. I. & McIntosh, W. C. Eocene and Oligocene volcanism at Mount Petras, Marie Byrd Land: implications for middle Cenozoic ice sheet reconstructions in West Antarctica. Antarct. Sci. 12, 477491 (2000).

Google Scholar

Huber, M. & Nof, D. The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 928 (2006).

Google Scholar

Evangelinos, D. et al. Late oligocene-miocene proto-antarctic circumpolar current dynamics off the Wilkes Land margin, East Antarctica. Glob. Planet. Change 191, 103221 (2020).

Google Scholar

Salabarnada, A. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, AntarcticaPart 1: Insights from late Oligocene astronomically paced contourite sedimentation. Clim. Past 14, 9911014 (2018).

Excerpt from:

Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition | Communications Earth &...

Related Posts