Multiple evolutionary origins and losses of tooth complexity in squamates – Nature.com

Posted: October 17, 2021 at 5:54 pm

Bels, V. L. et al. Biomechanics Of Feeding In Vertebrates (Springer-Verlag Berlin Heidelberg, 1994).

Ungar, P. S. Mammal Teeth: Origin, Evolution, and Diversity (JHU Press, 2010).

Machado, J. P. et al. Positive selection linked with generation of novel mammalian dentition patterns. Genome Biol. Evol. 8, 27482759 (2016).

CAS PubMed PubMed Central Article Google Scholar

Reisz, R. R. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution? J. Exp. Zool. B Mol. Dev. Evol. 306, 261277 (2006).

PubMed Article Google Scholar

Evans, A. R., Wilson, G. P., Fortelius, M. & Jernvall, J. High-level similarity of dentitions in carnivorans and rodents. Nature 445, 7881 (2007).

ADS CAS PubMed Article Google Scholar

Melstrom, K. M. & Irmis, R. B. Repeated evolution of herbivorous crocodyliforms during the age of dinosaurs. Curr. Biol. 29, 23892395 (2019).

CAS PubMed Article Google Scholar

si, A., Prondvai, E., Mallon, J. & Bodor, E. R. Diversity and convergences in the evolution of feeding adaptations in ankylosaurs (Dinosauria: Ornithischia). Hist. Biol. 29, 539570 (2016).

Article Google Scholar

Strickson, E., Prieto-Mrquez, A., Benton, M. J. & Stubbs, T. L. Dynamics of dental evolution in ornithopod dinosaurs. Sci. Rep. 6, 28904 (2016).

ADS CAS PubMed PubMed Central Article Google Scholar

Button, D. J. & Zanno, L. E. Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr. Biol. 30, 158168 (2020).

CAS PubMed Article Google Scholar

Butler, P. M. Molarization of the premolars in the Perissodactyla. Proc. Zool. Soc. Lond. 121, 819843 (1952).

Article Google Scholar

Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl Acad. Sci. USA 92, 1071810722 (1995).

ADS CAS PubMed PubMed Central Article Google Scholar

Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 10111019 (2007).

ADS CAS PubMed Article Google Scholar

Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457460 (2012).

ADS CAS PubMed Article Google Scholar

Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 11021109 (2001).

ADS CAS PubMed Article Google Scholar

Fraser, G. J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 7, e1000031 (2009).

PubMed Central Article CAS PubMed Google Scholar

Richman, J. M. & Handrigan, G. R. Reptilian tooth development. Genesis 49, 247260 (2011).

PubMed Article Google Scholar

Melstrom, K. M. The relationship between diet and tooth complexity in living dentigerous saurians. J. Morphol. 278, 500522 (2017).

PubMed Article Google Scholar

Zahradnicek, O., Buchtova, M., Dosedelova, H. & Tucker, A. S. The development of complex tooth shape in reptiles. Front. Physiol. 5, 74 (2014).

PubMed PubMed Central Article Google Scholar

Landova Sulcova, M. et al. Developmental mechanisms driving complex tooth shape in reptiles. Dev. Dyn. 249, 441464 (2020).

CAS PubMed Article Google Scholar

Jernvall, J. Linking development with generation of novelty in mammalian teeth. Proc. Natl Acad. Sci. USA 97, 26412645 (2000).

ADS CAS PubMed PubMed Central Article Google Scholar

Jernvall, J., Kettunen, P., Karavanova, I., Martin, L. B. & Thesleff, I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth-stimulating Fgf-4 gene. Int. J. Dev. Biol. 38, 463469 (1994).

CAS PubMed Google Scholar

Harjunmaa, E. et al. On the difficulty of increasing dental complexity. Nature 483, 324327 (2012).

ADS CAS PubMed Article Google Scholar

Simes, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706709 (2018).

ADS PubMed Article CAS Google Scholar

Luo, Z.-X., Cifelli, R. L. & Kielan-Jaworowska, Z. Dual origin of tribosphenic mammals. Nature 409, 5357 (2001).

ADS CAS PubMed Article Google Scholar

Butler, P. M. The ontogeny of molar pattern. Biol. Rev. 31, 3069 (1956).

Article Google Scholar

Van Valen, L. M. Homology and causes. J. Morphol. 173, 305312 (1982).

PubMed Article Google Scholar

Gould, S. J. Dollo on Dollos law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189212 (1970).

CAS PubMed Article Google Scholar

Jernvall, J. & Jung, H. S. Genotype, phenotype, and developmental biology of molar tooth characters. Am. J. Phys. Anthropol. 31, 171190 (2000).

PubMed Article Google Scholar

DavitBal, T., Tucker, A. S. & Sire, J. Y. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J. Anat. 214, 477501 (2009).

PubMed PubMed Central Article Google Scholar

Charles, C., Sol, F., Rodrigues, H. G. & Viriot, L. Under pressure? Dental adaptations to termitophagy and vermivory among mammals. Evolution 67, 17921804 (2013).

PubMed Article Google Scholar

Kurtn, B. Return of a lost structure in the evolution of the felid dentition. Soc. Sci. Fenn. Comm. Biol. 26, 112 (1963).

Google Scholar

Nydam, R. L., Gauthier, J. A. & Chiment, J. J. The mammal-like teeth of the Late Cretaceous lizard Peneteius aquilonius Estes 1969 (Squamata, Teiidae). J. Vertebr. Paleontol. 20, 628631 (2000).

Article Google Scholar

Brizuela, S. & Albino, A. M. The dentition of the neotropical lizard genus Teius Merrem 1820 (Squamata Teiidae). Trop. Zool. 22, 183193 (2009).

Google Scholar

Throckmorton, G. S. Oral food processing in two herbivorous lizards, Iguana iguana (Iguanidae) and Uromastix aegyptius (Agamidae). J. Morphol. 148, 363390 (1976).

CAS PubMed Article Google Scholar

Haridy, Y. Histological analysis of post-eruption tooth wear adaptations, and ontogenetic changes in tooth implantation in the acrodontan squamate Pogona vitticeps. PeerJ. 6, e5923 (2018).

PubMed PubMed Central Article Google Scholar

Presch, W. A survey of the dentition of the macroteiid lizards (Teiidae: Lacertilia). Herpetologica 30, 344349 (1974).

Google Scholar

Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: temperaturedependent and diversitydependent models receive equivalent support. Ecol. Lett. 22, 19001912 (2019).

PubMed Article Google Scholar

Garcia-Porta, J. et al. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat. Commun. 10, 4077 (2019).

ADS PubMed PubMed Central Article CAS Google Scholar

Pyron, R. A. Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob. Ecol. Biogeogr. 23, 11261134 (2014).

Article Google Scholar

Ricklefs, R. E., Losos, J. B. & Townsend, T. M. Evolutionary diversification of clades of squamate reptiles. J. Evol. Biol. 20, 17511762 (2007).

CAS PubMed Article Google Scholar

BarsClosel, M., Kohlsdorf, T., Moen, D. S. & Wiens, J. J. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). Evolution 71, 22432261 (2017).

PubMed Article Google Scholar

Cleary, T. J., Benson, R. B., Evans, S. E. & Barrett, P. M. Lepidosaurian diversity in the MesozoicPalaeogene: the potential roles of sampling biases and environmental drivers. R. Soc. Open Sci. 5, 171830 (2018).

ADS PubMed PubMed Central Article Google Scholar

Close, R. A. et al. Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale. Nat. Ecol. Evol. 3, 590597 (2019).

PubMed Article Google Scholar

Close, R. A. et al. The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287, 20200372 (2020).

PubMed PubMed Central Article Google Scholar

Herrera-Flores, J. A., Stubbs, T. L. & Benton, M. J. Ecomorphological diversification of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021).

ADS PubMed PubMed Central Article Google Scholar

Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 24832490 (2008).

PubMed PubMed Central Article Google Scholar

BarbaMontoya, J., dos Reis, M., Schneider, H., Donoghue, P. C. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. N. Phytol. 218, 819834 (2018).

Article Google Scholar

Collinson, M. E. In Biotic Responses To Global Change: The Last 145 Million Years (eds Culver, S. J. & Rawson, P. F.) 223243 (Cambridge University Press, 2000).

Wing, S. L. et al. Late Paleocene fossils from the Cerrejn Formation, Colombia, are the earliest record of neotropical rainforest. Proc. Natl Acad. Sci. USA 106, 1862718632 (2009).

ADS CAS PubMed PubMed Central Article Google Scholar

Espinoza, R. E., Wiens, J. J. & Tracy, C. R. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc. Natl Acad. Sci. USA 101, 1681916824 (2004).

ADS CAS PubMed PubMed Central Article Google Scholar

Mallon, J. C. & Brinkman, D. B. Basilemys morrinensis, a new species of nanhsiungchelyid turtle from the Horseshoe Canyon formation (Upper Cretaceous) of Alberta, Canada. J. Vertebr. Paleontol. 38, e1431922 (2018).

Article Google Scholar

Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833 (2021).

Read the rest here:

Multiple evolutionary origins and losses of tooth complexity in squamates - Nature.com

Related Posts