Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea) | Scientific…

Posted: March 18, 2022 at 8:36 pm

Mah, C. L. & Blake, D. B. Global diversity and phylogeny of the asteroidea (Echinodermata). PLoS ONE 7, e35644. https://doi.org/10.1371/journal.pone.0035644 (2012).

ADS CAS Article PubMed PubMed Central Google Scholar

WoRMS. Asteroidea. Accessed at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=123080. on 2021-08-02.

Blake, D. B. Adaptive zones of the class Asteroidea (Echinodermata). Bull. Mar. Sci. 46, 701718 (1990).

ADS Google Scholar

Clark, A. M. & Rowe, F. W. E. Monograph of shallow-water indo-west pacific echinoderms. Br. Mus. Nat. Hist. 690, 1230 (1971).

Google Scholar

Clark, A. M. & Downey, M. E. Starfishes of the ATLANTIC 794 (Chapman & Hall, 1992).

Google Scholar

Mah, C. L. Phylogeny of the Zoroasteridae (Zorocallina; Forcipulatida): Evolutionary events in deep-Sea Asteroidea displaying Paleozoic features. Zool. J. Linn. Soc. 150, 177210. https://doi.org/10.1111/j.1096-3642.2007.00291.x (2007).

Article Google Scholar

Knott, K. E. & Wray, G. A. Controversy and consensus in asteroid systematics: new insights to ordinal and familial relationships. Am. Zool. 40, 382392. https://doi.org/10.1093/icb/40.3.382 (2000).

CAS Article Google Scholar

Janies, D. A., Voight, J. R. & Daly, M. Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst. Biol. 60, 420438. https://doi.org/10.1093/sysbio/syr044 (2011).

Article PubMed Google Scholar

Reich, A., Dunn, C., Akasaka, K. & Wessel, G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS ONE 10, e0119627. https://doi.org/10.1371/journal.pone.0119627 (2015).

CAS Article PubMed PubMed Central Google Scholar

Linchangco, G. V. et al. The phylogeny of extant starfish (Asteroidea: Echinodermata) including Xyloplax, based on comparative transcriptomics. Mol. Phylogenet. Evol. 115, 161170. https://doi.org/10.1016/j.ympev.2017.07.022 (2017).

Article PubMed Google Scholar

Mortensen, T. Echinoderm larvae and their bearing on classification. Nature 111, 322323. https://doi.org/10.1038/111322b0 (1923).

ADS Article Google Scholar

Fell, H. B. A surviving somasteroid from the Eastern Pacific Ocean. Science 136, 633636. https://doi.org/10.1126/science.136.3516.633 (1962).

ADS CAS Article PubMed Google Scholar

Fell, H. B. A living somasteroid. Platasterias latiradiata Gray Univ. Kansas Paleontol. Contrib. Art 6, 116 (1962).

Google Scholar

Fell, H. B. The phylogeny of sea-stars. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 246, 381435. https://doi.org/10.1098/rstb.1963.0010 (1963).

ADS Article Google Scholar

Gale, A. S. Phylogeny and classification of the Asteroidea (Echinodermata). Zool. J. Linn. Soc. 89, 107132. https://doi.org/10.1111/j.1096-3642.1987.tb00652.x (1987).

Article Google Scholar

Gale, A. S. The Phylogeny of Post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata). Spec. Pap. Palaeontol. 5112 (2011).

Gale, A. S. Phylogeny of the Asteroidea. In Starfish: Biology and Ecology of the Asteroidea (ed. Lawrence, J. M.) 314 (Johns Hopkins University Press, 2013).

Google Scholar

Lafay, B., Smith, A. B. & Christen, R. A combined morphological and molecular approach to the phylogeny of asteroids (Asteroidea: Echinodermata). Syst. Biol. 44, 190208. https://doi.org/10.2307/2413706 (1995).

Article Google Scholar

Wada, H., Komatsu, M. & Satoh, N. Mitochondrial rDNA phylogeny of the Asteroidea suggests the primitiveness of the Paxillosida. Mol. Phylogenet. Evol. 6, 97106. https://doi.org/10.1006/mpev.1996.0062 (1996).

CAS Article PubMed Google Scholar

Macbride, E. W. Echinoderm larv and their bearing on classification. Nature 108, 529530. https://doi.org/10.1038/108529c0 (1921).

ADS Article Google Scholar

Macbride, E. W. Echinoderm larvae and their bearing on classification. Nature 111, 47. https://doi.org/10.1038/111047a0 (1923).

ADS Article Google Scholar

Macbride, E. W. Echinoderm larvae and their bearing on classification (reply). Nature 111, 323324. https://doi.org/10.1038/111323a0 (1923).

ADS Article Google Scholar

Madsen, F. J. The recent sea-star platasterias and the fossil Somasteroidea. Nature 209, 1367. https://doi.org/10.1038/2091367a0 (1966).

ADS Article Google Scholar

Blake, D. B. Sea star Platastenras: Ossicle morphology and taxonomic position. Science 176, 306307. https://doi.org/10.1126/science.176.4032.306 (1972).

ADS CAS Article PubMed Google Scholar

Blake, D. B. A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). J. Nat. Hist. 21, 481528. https://doi.org/10.1080/00222938700771141 (1987).

Article Google Scholar

Blake, D. Paxillosidans are not Primitive Asteroids: A Hypothesis Based on Functional Considerations. In Echinoderm Biology (eds Burke, R. et al.) 309314 (Balkema, 1988).

Google Scholar

Matsubara, M., Komatsu, M. & Wada, H. Close Relationship between Asterina and Solasteridae (Asteroidea) supported by both nuclear and mitochondrial gene molecular phylogenies. Zool. Sci. 21, 785793. https://doi.org/10.2108/zsj.21.785 (2004).

CAS Article Google Scholar

Blake, D. B. & Mah, C. L. The phylogeny of post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata) by A.S. Gale and perspectives on the systematics of the Asteroidea. Zootaxa 3779, 177194. https://doi.org/10.11646/zootaxa.3779.2.4 (2014).

Article PubMed Google Scholar

Woolley, S. N. et al. Deep sea diversity patterns are shaped by energy availability. Nature 533, 393396. https://doi.org/10.1038/nature17937 (2016).

ADS CAS Article PubMed Google Scholar

Sanders, H. L. & Hessler, R. R. Ecology of the deep-sea benthos. Science 163, 14191424 (1969).

ADS CAS Article Google Scholar

Naganoa, Y. & Nagahama, T. Fungal diversity in deep-sea extreme environments. Fungal Ecol. 5, 463471. https://doi.org/10.1016/j.funeco.2012.01.004 (2012).

Article Google Scholar

Clarke, A. H. On the composition, zoogeography, origin and age of the deep-sea mollusk fauna. Deep-Sea Res. 9, 291306. https://doi.org/10.1016/0011-7471(62)90012-8 (1962).

ADS Article Google Scholar

Lee, H. et al. Incorporation of deep-sea and small-sized species provides new insights into gastropods phylogeny. Mol. Phylogenet. Evol. 135(136147), 2019. https://doi.org/10.1016/j.ympev.2019.03.003 (2019).

Article Google Scholar

Raupach, M. J., Mayer, C., Malyutina, M. & Wgele, J. W. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc. Royal Soc. B. 276, 799808. https://doi.org/10.1098/rspb.2008.1063 (2009).

CAS Article Google Scholar

Sun, S., Sha, Z. & Wang, Y. Divergence history and hydrothermal vent adaptation of decapod crustaceans: A mitogenomic perspective. PLoS ONE 14, e0224373. https://doi.org/10.1371/journal.pone.0224373 (2019).

CAS Article PubMed PubMed Central Google Scholar

Lindner, A., Cairns, S. D. & Cunningham, C. W. From off shore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS One, 3, e2429, (2008)

Sun, S., Sha, Z. & Xiao, N. The first two complete mitogenomes of the order Apodida from deep-sea chemoautotrophic environments: New insights into the gene rearrangement, origin and evolution of the deep-sea sea cucumbers. Comp. Biochem. Physiol. Part D 39, 100839. https://doi.org/10.1016/j.cbd.2021.100839 (2021).

CAS Article Google Scholar

Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 17671780. https://doi.org/10.1093/nar/27.8.1767 (1999).

CAS Article PubMed PubMed Central Google Scholar

Hao, W., Richardson, A. O., Zheng, Y. & Palmer, J. D. Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc. Natl. Acad. Sci. USA 107, 2157621581. https://doi.org/10.1073/pnas.1016295107 (2010).

ADS Article PubMed PubMed Central Google Scholar

Osigus, H. J., Eitel, M., Bernt, M., Donath, A. & Schierwater, B. Mitogenomics at the base of Metazoa. Mol. Phylogenet. Evol. 69, 339351. https://doi.org/10.1016/j.ympev.2013.07.016 (2013).

CAS Article PubMed Google Scholar

Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406421. https://doi.org/10.1093/molbev/msu308 (2015).

CAS Article PubMed Google Scholar

Tihelka, E., Cai, C. Y., Pisani, D. & Donoghue, P. C. J. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Sci. Rep. 10, 14515. https://doi.org/10.1038/s41598-020-71393-0 (2020).

ADS CAS Article PubMed PubMed Central Google Scholar

Gvodk, V., Moravec, J., Kltsch, C. & Kotlk, P. Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Mol. Phylogen. Evol. 55, 11461166. https://doi.org/10.1016/j.ympev.2010.03.015 (2010).

Article Google Scholar

Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101, 301320. https://doi.org/10.1038/hdy.2008.62 (2010).

CAS Article Google Scholar

Eo, S. H. & DeWoody, J. A. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc. R Soc. Lond. B Biol. Sci. 277, 35873592. https://doi.org/10.1098/rspb.2010.0965 (2010).

CAS Article Google Scholar

Sun, Y. B., Shen, Y. Y., Irwin, D. M. & Zhang, Y. P. Evaluating the roles of energetic functional constraints on teleost mitochondrial encoded protein evolution. Mol. Biol. Evol. 28, 3944. https://doi.org/10.1093/molbev/msq256 (2010).

CAS Article PubMed Google Scholar

Boore, J. L., Collins, T. M., Stanton, D., Daehler, L. L. & Brown, W. M. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376, 163165. https://doi.org/10.1038/376163a0 (1995).

ADS CAS Article PubMed Google Scholar

Boore, J. L. & Brown, W. M. Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668674. https://doi.org/10.1016/S0959-437X(98)80035-X (1998).

CAS Article PubMed Google Scholar

Tomasco, I. H. & Lessa, E. P. The evolution of mitochondrial genomes in subterranean caviomorph rodents: Adaptation against a background of purifying selection. Mol. Phylogenet. Evol. 61, 6470. https://doi.org/10.1016/j.ympev.2011.06.014 (2011).

Article PubMed Google Scholar

Sun, S., Li, Q., Kong, L. & Yu, H. Limited locomotive ability relaxed selective constraints on molluscs mitochondrial genomes. Sci. Rep. 7, 10628. https://doi.org/10.1038/s41598-017-11117-z (2017).

ADS CAS Article PubMed PubMed Central Google Scholar

Sun, Y. B., Shen, Y. Y., Irwin, M. D. & Zhang, Y. P. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution. Mol. Biol. Evol. 28, 3944. https://doi.org/10.1093/molbev/msq256 (2011).

CAS Article PubMed Google Scholar

Shen, Y. Y., Shi, P., Sun, Y. B. & Zhang, Y. P. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19, 17601765. https://doi.org/10.1101/gr.093138.109 (2009).

View original post here:

Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea) | Scientific...

Related Posts