Mammalian maxilloturbinal evolution does not reflect thermal biology – Nature.com

Posted: July 26, 2023 at 1:29 am

Hillenius, W. J. & Ruben, J. A. The Evolution of Endothermy in Terrestrial Vertebrates: Who? When? Why? Physiol. Biochem. Zool. 77, 10191042 (2004).

Article PubMed Google Scholar

Lovegrove, B. G. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol. Rev. 87, 128162 (2012).

Article PubMed Google Scholar

Hillenius, W. J. The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18, 1729 (1992).

Article Google Scholar

Hillenius, W. J. Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy. Evolution 48, 207229 (1994).

Article PubMed Google Scholar

Kubo, T. & Benton, M. J. Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology 52, 10291037 (2009).

Article Google Scholar

Crompton, A. W., Owerkowicz, T., Bhullar, B.-A. S. & Musinsky, C. Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy. J. Vertebr. Paleontol. 37, e1269116 (2017).

Article Google Scholar

Huttenlocker, A. K. & Farmer, C. G. Bone Microvasculature Tracks Red Blood Cell Size Diminution in Triassic Mammal and Dinosaur Forerunners. Curr. Biol. 27, 4854 (2017).

Article CAS PubMed Google Scholar

Benton, M. J. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res. 100, 261289 (2021).

Article ADS Google Scholar

Arajo, R. et al. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 16 (2022) https://doi.org/10.1038/s41586-022-04963-z.

Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses. (1958).

Walker, J. E. C. & Wells, R. E. Heat and water exchange in the respiratory tract. Am. J. Med. 30, 259267 (1961).

Article CAS PubMed Google Scholar

Jackson, D. C. & Schmidt-Nielsen, K. Countercurrent heat exchange in the respiratory passages. Proc. Natl Acad. Sci. USA. 51, 11921197 (1964).

Article ADS CAS PubMed PubMed Central Google Scholar

Schmidt-Nielsen, K., Hainsworth, F. R. & Murrish, D. E. Counter-current heat exchange in the respiratory passages: Effect on water and heat balance. Respir. Physiol. 9, 263276 (1970).

Article CAS PubMed Google Scholar

Collins, J. C., Pilkington, T. C. & Schmidt-Nielsen, K. A Model of Respiratory Heat Transfer in a Small Mammal. Biophys. J. 11, 886914 (1971).

Article ADS CAS PubMed PubMed Central Google Scholar

Ruben, J. A. et al. The Metabolic Status of Some Late Cretaceous Dinosaurs. Science 273, 12041207 (1996).

Article ADS CAS Google Scholar

Owerkowicz, T., Musinsky, C., Middleton, K. M. & Crompton, A. W. Respiratory Turbinates and the Evolution of Endothermy in Mammals and Birds. Great Transformations in Vertebrate Evolution 143166 (University of Chicago Press, 2015).

Van Valkenburgh, B. et al. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J. Anat. 218, 298310 (2011).

Article PubMed PubMed Central Google Scholar

Martinez, Q. et al. Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc. Natl Acad. Sci. 117, 89588965 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Laa, M. et al. New insights into the respiration and metabolic physiology of Lystrosaurus. Acta Zool. 92, 363371 (2011).

Article Google Scholar

Martin, C. J. I. Thermal adjustment and respiratory exchange in monotremes and marsupials.A study in the development of homothermism. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character 195, 137 (1903).

ADS Google Scholar

Wislocki, G. B. Location of the Testes and Body Temperature in Mammals. Q. Rev. Biol. 8, 385396 (1933).

Article Google Scholar

McNab, B. K. The Metabolism of Fossorial Rodents: A Study of Convergence. Ecology 47, 712733 (1966).

Article Google Scholar

umbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - a review. J. Therm. Biol. 79, 166189 (2019).

Article PubMed Google Scholar

Geiser, F. & Ruf, T. Hibernation versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns. Physiol. Zool. 68, 935966 (1995).

Article Google Scholar

Wilz, M. & Heldmaier, G. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J. Comp. Physiol. [B] 170, 511521 (2000).

Article CAS Google Scholar

Ramos-Lara, N., Koprowski, J., Krystufek, B. & Hoffmann, I. Spermophilus citellus (Rodentia: Sciuridae). Mamm. Species 913, 7187 (2014).

Article Google Scholar

Lurz, P. W. W., Gurnell, J. & Magris, L. Sciurus vulgaris. Mamm. Species 2005, 110 (2005).

Article Google Scholar

Wilson, D. E., Lacher Jr, T. E. & Mittermeier, R. A. Lagomorphs and rodents I Handbook of the Mammals of the World. 6 (2016).

Stenvinkel, P., Jani, A. & Johnson, R. Hibernating bears (Ursidae): Metabolic magicians of definite interest for the nephrologist. Kidney Int. 83, (2012).

Mittermeier, R. A. & Wilson, D. E. Carnivores Handbook of the mammals of the world. 1 (2009).

McKechnie, A. & Mzilikazi, N. Heterothermy in Afrotropical Mammals and Birds: A Review. Integr. Comp. Biol. 51, 349363 (2011).

Article PubMed Google Scholar

Maier, W. A neglected part of the mammalian skull: The outer nasal cartilages as progressive remnants of the chondrocranium. Vertebr. Zool. 70, 367382 (2020).

Ruf, I. Ontogenetic transformations of the ethmoidal region in Muroidea (Rodentia, Mammalia): new insights from perinatal stages. (2020).

White, C. R. & Seymour, R. S. Does Basal Metabolic Rate Contain a Useful Signal? Mammalian BMR Allometry and Correlations with a Selection of Physiological, Ecological, and LifeHistory Variables. Physiol. Biochem. Zool. 77, 929941 (2004).

Article PubMed Google Scholar

Smith, T. D., Bhatnagar, K. P., Tuladhar, P. & Burrows, A. M. Distribution of olfactory epithelium in the primate nasal cavity: Are microsmia and macrosmia valid morphological concepts? Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 281A, 11731181 (2004).

Article Google Scholar

Smith, T. D., Eiting, T. P. & Bhatnagar, K. P. A Quantitative Study of Olfactory, Non-Olfactory, and Vomeronasal Epithelia in the Nasal Fossa of the Bat Megaderma lyra. J. Mamm. Evol. 19, 2741 (2012).

Article Google Scholar

Smith, T. D. & Rossie, J. B. Nasal Fossa of Mouse and Dwarf Lemurs (Primates, Cheirogaleidae). Anat. Rec. 291, 895915 (2008).

Article Google Scholar

Yee, K. K., Craven, B. A., Wysocki, C. J. & Van Valkenburgh, B. Comparative Morphology and Histology of the Nasal Fossa in Four Mammals: Gray Squirrel, Bobcat, Coyote, and White-Tailed Deer. Anat. Rec. 299, 840852 (2016).

Article Google Scholar

Herbert, R. A., Janardhan, K. S., Pandiri, A. R., Cesta, M. F. & Miller, R. A. Nose, Larynx, and Trachea. Boormans Pathol. Rat 391435 (2018) https://doi.org/10.1016/B978-0-12-391448-4.00022-8.

Withers, P. C. & Jarvis, J. U. M. The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat. Comp. Biochem. Physiol. A Physiol. 66, 215219 (1980).

Article Google Scholar

Buffenstein, R. & Yahav, S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 16, 227232 (1991).

Article Google Scholar

Hislop, M. S. & Buffenstein, R. Noradrenaline induces nonshivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the Damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J. Therm. Biol. 19, 2532 (1994).

Article CAS Google Scholar

Buffenstein, R. et al. The naked truth: a comprehensive clarification and classification of current myths in naked molerat biology. Biol. Rev. brv.12791 (2021) https://doi.org/10.1111/brv.12791.

Braude, S. et al. Surprisingly long survival of premature conclusions about naked mole-rat biology. Biol. Rev. 96, 376393 (2021).

Article PubMed Google Scholar

Enger, P. S. Heat Regulation and Metabolism in some Tropical Mammals and Birds. Acta Physiol. Scand. 40, 161166 (1957).

Article CAS PubMed Google Scholar

Cliffe, R. N. et al. The metabolic response of the Bradypus sloth to temperature. PeerJ 6, e5600 (2018).

Article PubMed PubMed Central Google Scholar

Langman, V. A. Nasal heat exchange in a northern ungulate, the reindeer (Rangifer tarandus). Respir. Physiol. 59, 279287 (1985).

Article CAS PubMed Google Scholar

Van Valkenburgh, B., Theodor, J., Friscia, A., Pollack, A. & Rowe, T. Respiratory turbinates of canids and felids: a quantitative comparison. J. Zool. 264, 281293 (2004).

Article Google Scholar

Amson, E., Billet, G. & de Muizon, C. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure. Proc. R. Soc. B Biol. Sci. 285, 20180270 (2018).

Article Google Scholar

Green, P. A. et al. Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J. Anat. 221, 609621 (2012).

Article PubMed PubMed Central Google Scholar

Ade, M. External Morphology and Evolution of the Rhinarium of Lagomorpha. With Special Reference to the Glires Hypothesis. Zoosyst. Evol. 75, 191216 (1999).

Article Google Scholar

Buffenstein, R. & Jarvis, J. U. M. Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus. J. Zool. 205, 107121 (1985).

Article Google Scholar

Holtze, S. et al. The microenvironment of naked mole-rat burrows in East Africa. Afr. J. Ecol. 56, 279289 (2018).

Article Google Scholar

Schmidt-Nielsen, K. The neglected interface: the biology of water as a liquid-gas system*. Q. Rev. Biophys. 2, 283304 (1969).

Article CAS PubMed Google Scholar

Schmidt-Nielsen, K., Schroter, R. C. & Shkolnik, A. Desaturation of Exhaled Air in Camels. Proc. R. Soc. Lond. B Biol. Sci. 211, 305319 (1981).

Article ADS CAS PubMed Google Scholar

View original post here:

Mammalian maxilloturbinal evolution does not reflect thermal biology - Nature.com

Related Posts