Evolutionary radiation strategy revealed in the Scarabaeidae with evidence of continuous spatiotemporal morphology … – Nature.com

Posted: June 6, 2024 at 8:51 am

Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961964 (2003).

Article CAS PubMed Google Scholar

Wirta, H., Orsini, L. & Hanski, I. An old adaptive radiation of forest dung beetles in Madagascar. Mol. Phylogenet. Evol. 47, 10761089 (2008).

Article PubMed Google Scholar

Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728732 (2009).

Article CAS PubMed Google Scholar

Magalln, S. & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349365 (2009).

Article PubMed Google Scholar

Bai, M. et al. Mandible evolution in the Scarabaeinae (Coleoptera: Scarabaeidae) and adaptations to coprophagous habits. Front. Zool. 12, 110 (2015).

Article Google Scholar

Joseph, S. J., Marti, H., Didelot, X., Read, T. D. & Dean, D. Tetracycline selective pressure and homologous recombination shape the evolution of Chlamydia suis: a recently identified zoonotic pathogen. Genome Biol. Evol. 8, 26132623 (2016).

Article CAS PubMed PubMed Central Google Scholar

Hu, Y., Linz, D. M. & Moczek, A. P. Beetle horns evolved from wing serial homologs. Science 366, 10041007 (2019).

Article CAS PubMed Google Scholar

Chander, Y. et al. Resistance evolution against host-directed antiviral agents: Buffalopox virus switches to use p38- under long-term selective pressure of an inhibitor targeting p38-. Mol. Biol. Evol. 39, msac177 (2022).

Article CAS PubMed PubMed Central Google Scholar

Feng, S. et al. Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 185, 115 (2022).

Article Google Scholar

Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

Article CAS PubMed PubMed Central Google Scholar

Guo, X. et al. Chloranthus genome provides insights into the early diversification of angiosperms. Nat. Commun. 12, 6930 (2021).

Article CAS PubMed PubMed Central Google Scholar

Benton, M. J., Wilf, P. & Sauquet, H. The angiosperm terrestrial revolution and the origins of modern biodiversity. N. Phytol. 233, 20172035 (2022).

Article Google Scholar

Bian, X., Garner, B. H., Liu, H. & Vogler, A. P. The SITE-100 project: site-based biodiversity genomics for species discovery, community ecology, and a global tree-of-life. Front. Ecol. Evol. 10 (2022).

Li, H. T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461470 (2019).

Article PubMed Google Scholar

Lu, Y. et al. The evolution of conglobation in Ceratocanthinae. Commun. Biol. 5, 777 (2022).

Article PubMed PubMed Central Google Scholar

liobait, I., Fortelius, M. & Stenseth, N. C. Reconciling taxon senescence with the Red Queens hypothesis. Nature 552, 9295 (2017).

Article PubMed Google Scholar

Becker, D. et al. Adaptive phenotypic plasticity is under stabilizing selection in Daphnia. Nat. Ecol. Evol. 6, 14491457 (2022).

Article PubMed Google Scholar

Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685706 (2018).

Article CAS PubMed Google Scholar

Ramirez-Barahona, S., Sauquet, H. & Magallon, S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat. Ecol. Evol. 4, 12321238 (2020).

Article PubMed Google Scholar

Beutel, R. G. & Leschen, R. A. Coleoptera, beetles. Morphology and systematics (Walter de Gruyter GmbH & Co KG, 2016).

Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary biology and conservation of dung beetles (Pensoft Sofia-Moscow, 2009).

Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. P. Roy. Soc. B-Biol. Sci. 281, 20141470 (2014).

Google Scholar

Frings, J., Lago, P. K. & Ahrens, D. Morphology of mouthparts poorly resolves the phylogeny of Sericini chafers (Coleoptera: Scarabaeidae). Zool. Anz. 284, 5365 (2020).

Article Google Scholar

Browne, J. & Scholtz, C. H. Evolution of the scarab hindwing articulation and wing base: a contribution toward the phylogeny of the Scarabaeidae (Scarabaeoidea: Coleoptera). Syst. Entomol. 23, 307326 (1998).

Article Google Scholar

Tarasov, S., Vaz-de-Mello, F. Z., Krell, F.-T. & Dimitrov, D. A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber. PeerJ 4, e1988 (2016).

Article PubMed PubMed Central Google Scholar

Hunt, T. et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 19131916 (2007).

Article CAS PubMed Google Scholar

NeitaMoreno, J. C., Agrain, F. A., Eberle, J., Ahrens, D. & Pereyra, V. On the phylogenetic position and systematics of extant and fossil Aclopinae (Coleoptera: Scarabaeidae). Syst. Entomol. 44, 709727 (2019).

Article Google Scholar

Ahrens, D., Liu, W. G., Fabrizi, S., Bai, M. & Yang, X. K. A taxonomic review of the Neoserica (sensu lato) septemlamellata group (Coleoptera, Scarabaeidae, Sericini). Zookeys 402, 67102 (2014).

Article Google Scholar

Monaghan, M. T., Inward, D. J., Hunt, T. & Vogler, A. P. A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). Mol. Phylogenet. Evol. 45, 674692 (2007).

Article CAS PubMed Google Scholar

Howden, H. New Rhyparini from Fiji and the Philippines (Coleoptera: Scarabaeidae: Aphodiinae). Coleopts. Bull. 49, 2327 (1995).

Google Scholar

Mora-Aguilar, E. F. & Delgado, L. A new Mexican species of Rhyparus Westwood (Coleoptera: Scarabaeidae: Aphodiinae), with new records and a key to the Mexican and Guatemalan species. Zootaxa 4609, 196200 (2019).

Article Google Scholar

Skelley, P. E., Smith, A. B. T. & Mora-Aguilar, E. F. A review of the flightless genus Nanotermitodius Howden, 2003 (Coleoptera: Scarabaeidae: Aphodiinae: Rhyparini). Zootaxa 5200, 355364 (2022).

Article PubMed Google Scholar

Skelley, P., Clavijo-Bustos, J. & Keller, O. Extinct or extant? A new species of Termitodius Wasmann, 1894, (Coleoptera: Scarabaeidae: Aphodiinae: Rhyparini) with a short review of the genus. Insecta Mundi 0915, 114 (2022).

Google Scholar

Foster, C. S. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol. 66, 338351 (2017).

PubMed Google Scholar

Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl. Acad. Sci. 117, 2886728875 (2020).

Article CAS PubMed PubMed Central Google Scholar

Krell, F. T. The fossil record of Mesozoic and Tertiary Scarabaeoidea (Coleoptera: Polyphaga). Invertebr. Syst. 14, 871905 (2000).

Article Google Scholar

Lawrence, J., Hastings, A., Dallwitz, M., Paine, T. & Zurcher, E. Beetles of the world: a key and information system for families and subfamilies (CSIRO Publishing, 2000).

Lawrence, J. & Laporte, P. Handbook of zoology. Arthropoda: Insecta. In: Coleoptera, Beetles. Morphology and Systematics. Archostemata, Adephaga, Myxophaga, and Polyphaga partim, Volume 1, 2nd Edition (Walter de Gruyter, 1836).

Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for Darwins abominable mystery. Ecol. Lett. 12, 865872 (2009).

Article PubMed PubMed Central Google Scholar

De Boer, H. J., Eppinga, M. B., Wassen, M. J. & Dekker, S. C. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nat. Commun. 3, 1221 (2012).

Article PubMed Google Scholar

Alroy, J. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26, 707733 (2000).

Article Google Scholar

Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507512 (2007).

Article CAS PubMed Google Scholar

Jacobs, B. F. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 15731583 (2004).

Article PubMed PubMed Central Google Scholar

Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 20232031 (2006).

Article Google Scholar

Sinclair, A. Adaptations of African ungulates and their effects on community function. In: Ecosystems of the World (1983).

Cambefort, Y. From saprophagy to coprophagy. In: Dung Beetle ecology 2235 (1991).

Browne, J. & Scholtz, C. H. Evolution of the scarab hindwing articulation and wing base: a contribution toward the phylogeny of the Scarabaeidae (Scarabaeoidea : Coleoptera). Syst. Entomol. 23, 307326 (1998).

Article Google Scholar

Philips, T. K., Pretorius, E. & Scholtz, C. H. A phylogenetic analysis of dung beetles (Scarabaeinae : Scarabaeidae): unrolling an evolutionary history. Invertebr. Syst. 18, 5388 (2004).

Article Google Scholar

Scholtz, C. Phylogenetic trends in the Scarabaeoidea (Coleoptera). J. Nat. Hist. 24, 10271066 (1990).

Article Google Scholar

Martnez, M. & Cruz, R. Comparative morphological analysis of testis follicles in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae, Aphodiinae, Geotrupinae). P. Entomol. Soc. Wash. 101, 804815 (1999).

Google Scholar

Smith, A. B., Hawks, D. C. & Heraty, J. M. An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analyses. Coleopts. Bull. 60, 3546 (2006).

Article Google Scholar

Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

Article CAS PubMed PubMed Central Google Scholar

Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: temperaturedependent and diversitydependent models receive equivalent support. Ecol. Lett. 22, 19001912 (2019).

Article PubMed Google Scholar

Davis, A. L., Scholtz, C. H. & Philips, T. K. Historical biogeography of scarabaeine dung beetles. J. Biogeogr. 29, 12171256 (2002).

Read more from the original source:

Evolutionary radiation strategy revealed in the Scarabaeidae with evidence of continuous spatiotemporal morphology ... - Nature.com

Related Posts