Relationship between the thermodynamic concept of entropy and the evolution of living organisms
Research concerning the relationship between the thermodynamic quantity entropy and the evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.[1][2]
The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrdinger stimulated further research in the field. In his book, Schrdinger originally stated that life feeds on negative entropy, or negentropy as it is sometimes called, but in a later edition corrected himself in response to complaints and stated that the true source is free energy. More recent work has restricted the discussion to Gibbs free energy because biological processes on Earth normally occur at a constant temperature and pressure, such as in the atmosphere or at the bottom of the ocean, but not across both over short periods of time for individual organisms.
Ideas about the relationship between entropy and living organisms have inspired hypotheses and speculations in many contexts, including psychology, information theory, the origin of life, and the possibility of extraterrestrial life.
In 1863, Rudolf Clausius published his noted memoir On the Concentration of Rays of Heat and Light, and on the Limits of Its Action, wherein he outlined a preliminary relationship, based on his own work and that of William Thomson (Lord Kelvin), between living processes and his newly developed concept of entropy.[citation needed] Building on this, one of the first to speculate on a possible thermodynamic perspective of organic evolution was the Austrian physicist Ludwig Boltzmann. In 1875, building on the works of Clausius and Kelvin, Boltzmann reasoned:
The general struggle for existence of animate beings is not a struggle for raw materials these, for organisms, are air, water and soil, all abundantly available nor for energy which exists in plenty in any body in the form of heat, but a struggle for [negative] entropy, which becomes available through the transition of energy from the hot sun to the cold earth.[3]
In 1876, American civil engineer Richard Sears McCulloh, in his Treatise on the Mechanical Theory of Heat and its Application to the Steam-Engine, which was an early thermodynamics textbook, states, after speaking about the laws of the physical world, that "there are none that are established on a firmer basis than the two general propositions of Joule and Carnot; which constitute the fundamental laws of our subject." McCulloh then goes on to show that these two laws may be combined in a single expression as follows:
where
McCulloh then declares that the applications of these two laws, i.e. what are currently known as the first law of thermodynamics and the second law of thermodynamics, are innumerable:
When we reflect how generally physical phenomena are connected with thermal changes and relations, it at once becomes obvious that there are few, if any, branches of natural science which are not more or less dependent upon the great truths under consideration. Nor should it, therefore, be a matter of surprise that already, in the short space of time, not yet one generation, elapsed since the mechanical theory of heat has been freely adopted, whole branches of physical science have been revolutionized by it.[4]:p. 267
McCulloh gives a few of what he calls the "more interesting examples" of the application of these laws in extent and utility. His first example is physiology, wherein he states that "the body of an animal, not less than a steamer, or a locomotive, is truly a heat engine, and the consumption of food in the one is precisely analogous to the burning of fuel in the other; in both, the chemical process is the same: that called combustion." He then incorporates a discussion of Antoine Lavoisier's theory of respiration with cycles of digestion, excretion, and perspiration, but then contradicts Lavoisier with recent findings, such as internal heat generated by friction, according to the new theory of heat, which, according to McCulloh, states that the "heat of the body generally and uniformly is diffused instead of being concentrated in the chest". McCulloh then gives an example of the second law, where he states that friction, especially in the smaller blood vessels, must develop heat. Undoubtedly, some fraction of the heat generated by animals is produced in this way. He then asks: "but whence the expenditure of energy causing that friction, and which must be itself accounted for?"
To answer this question he turns to the mechanical theory of heat and goes on to loosely outline how the heart is what he calls a "force-pump", which receives blood and sends it to every part of the body, as discovered by William Harvey, and which "acts like the piston of an engine and is dependent upon and consequently due to the cycle of nutrition and excretion which sustains physical or organic life". It is likely that McCulloh modeled parts of this argument on that of the famous Carnot cycle. In conclusion, he summarizes his first and second law argument as such:
Everything physical being subject to the law of conservation of energy, it follows that no physiological action can take place except with expenditure of energy derived from food; also, that an animal performing mechanical work must from the same quantity of food generate less heat than one abstaining from exertion, the difference being precisely the heat equivalent of that of work.[4]:p. 270
In the 1944 book What is Life?, Austrian physicist Erwin Schrdinger, who in 1933 had won the Nobel Prize in Physics, theorized that life contrary to the general tendency dictated by the second law of thermodynamics, which states that the entropy of an isolated system tends to increase decreases or keeps constant its entropy by feeding on negative entropy.[5] The problem of organization in living systems increasing despite the second law is known as the Schrdinger paradox.[6] In his note to Chapter 6 of What is Life?, however, Schrdinger remarks on his usage of the term negative entropy:
Let me say first, that if I had been catering for them [physicists] alone I should have let the discussion turn on free energy instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to energy for making the average reader alive to the contrast between the two things.
This, Schrdinger argues, is what differentiates life from other forms of the organization of matter. In this direction, although life's dynamics may be argued to go against the tendency of the second law, life does not in any way conflict with or invalidate this law, because the principle that entropy can only increase or remain constant applies only to a closed system which is adiabatically isolated, meaning no heat can enter or leave, and the physical and chemical processes which make life possible do not occur in adiabatic isolation, i.e. living systems are open systems. Whenever a system can exchange either heat or matter with its environment, an entropy decrease of that system is entirely compatible with the second law.[7]
Schrdinger asked the question: "How does the living organism avoid decay?" The obvious answer is: "By eating, drinking, breathing and (in the case of plants) assimilating." While energy from nutrients is necessary to sustain an organism's order, Schrdinger also presciently postulated the existence of other molecules equally necessary for creating the order observed in living organisms: "An organism's astonishing gift of concentrating a stream of order on itself and thus escaping the decay into atomic chaos of drinking orderliness from a suitable environment seems to be connected with the presence of the aperiodic solids..." We now know that this "aperiodic" crystal is DNA, and that its irregular arrangement is a form of information. "The DNA in the cell nucleus contains the master copy of the software, in duplicate. This software seems to control by specifying an algorithm, or set of instructions, for creating and maintaining the entire organism containing the cell."[8]
DNA and other macromolecules determine an organism's life cycle: birth, growth, maturity, decline, and death. Nutrition is necessary but not sufficient to account for growth in size, as genetics is the governing factor. At some point, virtually all organisms normally decline and die even while remaining in environments that contain sufficient nutrients to sustain life. The controlling factor must be internal and not nutrients or sunlight acting as causal exogenous variables. Organisms inherit the ability to create unique and complex biological structures; it is unlikely for those capabilities to be reinvented or to be taught to each generation. Therefore, DNA must be operative as the prime cause in this characteristic as well. Applying Boltzmann's perspective of the second law, the change of state from a more probable, less ordered, and higher entropy arrangement to one of less probability, more order, and lower entropy (as is seen in biological ordering) calls for a function like that known of DNA. DNA's apparent information-processing function provides a resolution of the Schrdinger paradox posed by life and the entropy requirement of the second law.[9]
In recent years, the thermodynamic interpretation of evolution in relation to entropy has begun to utilize the concept of the Gibbs free energy, rather than entropy.[10][11] This is because biological processes on Earth take place at roughly constant temperature and pressure, a situation in which the Gibbs free energy is an especially useful way to express the second law of thermodynamics. The Gibbs free energy is given by:
where
The minimization of the Gibbs free energy is a form of the principle of minimum energy, which follows from the entropy maximization principle for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for open systems when chemical potential terms are included in the energy balance equation. In a popular 1982 textbook, Principles of Biochemistry, noted American biochemist Albert Lehninger argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings free energy, in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."[12]
Similarly, according to the chemist John Avery, from his 2003 book Information Theory and Evolution, we find a presentation in which the phenomenon of life, including its origin and evolution, as well as human cultural evolution, has its basis in the background of thermodynamics, statistical mechanics, and information theory. The (apparent) paradox between the second law of thermodynamics and the high degree of order and complexity produced by living systems, according to Avery, has its resolution "in the information content of the Gibbs free energy that enters the biosphere from outside sources."[13] Assuming evolution drives organisms towards higher information content, it is postulated by Gregory Chaitin that life has properties of high mutual information,[14] and by Tamvakis that life can be quantified using mutual information density metrics, a generalisation of the concept of Biodiversity.[15]
In a study titled "Natural selection for least action" published in the Proceedings of the Royal Society A., Ville Kaila and Arto Annila of the University of Helsinki describe how the process of natural selection responsible for such local increase in order may be mathematically derived directly from the expression of the second law equation for connected non-equilibrium open systems. The second law of thermodynamics can be written as an equation of motion to describe evolution, showing how natural selection and the principle of least action can be connected by expressing natural selection in terms of chemical thermodynamics. In this view, evolution explores possible paths to level differences in energy densities and so increase entropy most rapidly. Thus, an organism serves as an energy transfer mechanism, and beneficial mutations allow successive organisms to transfer more energy within their environment.[16][17]
The second law of thermodynamics applied to the origin of life is a far more complicated issue than the further development of life, since there is no "standard model" of how the first biological lifeforms emerged, only a number of competing hypotheses. The problem is discussed within the context of abiogenesis, implying gradual pre-Darwinian chemical evolution. In 1924, Alexander Oparin suggested that sufficient energy for generating early lifeforms from non-living molecules was provided in a "primordial soup". The Belgian scientist Ilya Prigogine was awarded with a Nobel Prize in 1977 for an analysis in this area, and one of his main contributions was the concept of dissipative system, which describes the thermodynamics of open systems in non-equilibrium states. A related topic is the probability that life would emerge, which has been discussed in several studies, for example by Russell Doolittle.[18]
The evolution of order, manifested as biological complexity, in living systems and the generation of order in certain non-living systems was proposed to obey a common fundamental principal called "the Darwinian dynamic".[19] The Darwinian dynamic was formulated by first considering how microscopic order is generated in relatively simple non-biological systems that are far from thermodynamic equilibrium (e.g. tornadoes, hurricanes). Consideration was then extended to short, replicating RNA molecules assumed to be similar to the earliest forms of life in the RNA world. It was shown that the underlying order-generating processes in the non-biological systems and in replicating RNA are basically similar. This approach helps clarify the relationship of thermodynamics to evolution as well as the empirical content of Darwin's theory.
In 2009, physicist Karo Michaelian published a thermodynamic dissipation theory for the origin of life[20][21] in which the fundamental molecules of life; nucleic acids, amino acids, carbohydrates (sugars), and lipids are considered to have been originally produced as microscopic dissipative structures (through Prigogine's dissipative structuring[22]) as pigments at the ocean surface to absorb and dissipate into heat the UVC flux of solar light arriving at Earth's surface during the Archean, just as do organic pigments in the visible region today. These UVC pigments were formed through photochemical dissipative structuring from more common and simpler precursor molecules like HCN and H2O under the UVC flux of solar light.[20][21][23] The thermodynamic function of the original pigments (fundamental molecules of life) was to increase the entropy production of the incipient biosphere under the solar photon flux and this, in fact, remains as the most important thermodynamic function of the biosphere today, but now mainly in the visible region where photon intensities are higher and biosynthetic pathways are more complex, allowing pigments to be synthesized from lower energy visible light instead of UVC light which no longer reaches Earth's surface.
Jeremy England developed a hypothesis of the physics of the origins of life, that he calls 'dissipation-driven adaptation'.[24][25] The hypothesis holds that random groups of molecules can self-organize to more efficiently absorb and dissipate heat from the environment. His hypothesis states that such self-organizing systems are an inherent part of the physical world.[26]
Like a thermodynamic system, an information system has an analogous concept to entropy called information entropy. Here, entropy is a measure of the increase or decrease in the novelty of information. Path flows of novel information show a familiar pattern. They tend to increase or decrease the number of possible outcomes in the same way that measures of thermodynamic entropy increase or decrease the state space. Like thermodynamic entropy, information entropy uses a logarithmic scale: P(x) log P(x), where P is the probability of some outcome x.[27] Reductions in information entropy are associated with a smaller number of possible outcomes in the information system.
In 1984, Brooks and Wiley introduced the concept of species entropy as a measure of the sum of entropy reduction within species populations in relation to free energy in the environment.[28] Brooks-Wiley entropy looks at three categories of entropy changes: information, cohesion and metabolism. Information entropy here measures the efficiency of the genetic information in recording all the potential combinations of heredity which are present. Cohesion entropy looks at the sexual linkages within a population. Metabolic entropy is the familiar chemical entropy used to compare the population to its ecosystem. The sum of these three is a measure of nonequilibrium entropy that drives evolution at the population level.
A 2022 article by Helman in Acta Biotheoretica suggests identifying a divergence measure of these three types of entropies: thermodynamic entropy, information entropy and species entropy.[29] Where these three are overdetermined, there will be a formal freedom that arises similar to how chirality arises from a minimum number of dimensions. Once there are at least four points for atoms, for example, in a molecule that has a central atom, left and right enantiomers are possible. By analogy, once a threshold of overdetermination in entropy is reached in living systems, there will be an internal state space that allows for ordering of systems operations. That internal ordering process is a threshold for distinguishing living from nonliving systems.
In 1964, James Lovelock was among a group of scientists requested by NASA to make a theoretical life-detection system to look for life on Mars during the upcoming space mission. When thinking about this problem, Lovelock wondered "how can we be sure that Martian life, if any, will reveal itself to tests based on Earth's lifestyle?"[30] To Lovelock, the basic question was "What is life, and how should it be recognized?" When speaking about this issue with some of his colleagues at the Jet Propulsion Laboratory, he was asked what he would do to look for life on Mars. To this, Lovelock replied "I'd look for an entropy reduction, since this must be a general characteristic of life."[30]
In 2013, Azua-Bustos and Vega argued that, disregarding the types of lifeforms that might be envisioned both on Earth and elsewhere in the Universe, all should share in common the attribute of decreasing their internal entropy at the expense of free energy obtained from their surroundings. As entropy allows the quantification of the degree of disorder in a system, any envisioned lifeform must have a higher degree of order than its immediate supporting environment. These authors showed that by using fractal mathematics analysis alone, they could readily quantify the degree of structural complexity difference (and thus entropy) of living processes as distinct entities separate from their similar abiotic surroundings. This approach may allow the future detection of unknown forms of life both in the Solar System and on recently discovered exoplanets based on nothing more than entropy differentials of complementary datasets (morphology, coloration, temperature, pH, isotopic composition, etc.).[31]
The notion of entropy as disorder has been transferred from thermodynamics to psychology by Polish psychiatrist Antoni Kpiski, who admitted being inspired by Erwin Schrdinger.[32] In his theoretical framework devised to explain mental disorders (the information metabolism theory), the difference between living organisms and other systems was explained as the ability to maintain order. Contrary to inanimate matter, organisms maintain the particular order of their bodily structures and inner worlds which they impose onto their surroundings and forward to new generations. The life of an organism or the species ceases as soon as it loses that ability.[33] Maintenance of that order requires continual exchange of information between the organism and its surroundings. In higher organisms, information is acquired mainly through sensory receptors and metabolised in the nervous system. The result is action some form of motion, for example locomotion, speech, internal motion of organs, secretion of hormones, etc. The reactions of one organism become an informational signal to other organisms. Information metabolism, which allows living systems to maintain the order, is possible only if a hierarchy of value exists, as the signals coming to the organism must be structured. In humans that hierarchy has three levels, i.e. biological, emotional, and sociocultural.[34] Kpiski explained how various mental disorders are caused by distortions of that hierarchy, and that the return to mental health is possible through its restoration.[35]
The idea was continued by Struzik, who proposed that Kpiski's information metabolism theory may be seen as an extension of Lon Brillouin's negentropy principle of information.[36] In 2011, the notion of "psychological entropy" was reintroduced to psychologists by Hirsh et al.[37] Similarly to Kpiski, these authors noted that uncertainty management is a critical ability for any organism. Uncertainty, arising due to the conflict between competing perceptual and behavioral affordances, is experienced subjectively as anxiety. Hirsh and his collaborators proposed that both the perceptual and behavioral domains may be conceptualized as probability distributions and that the amount of uncertainty associated with a given perceptual or behavioral experience can be quantified in terms of Claude Shannon's entropy formula.
Entropy is well defined for equilibrium systems, so objections to the extension of the second law and of entropy to biological systems, especially as it pertains to its use to support or discredit the theory of evolution, have been stated.[38][39] Living systems and indeed many other systems and processes in the universe operate far from equilibrium.
However, entropy is well defined much more broadly based on the probabilities of a system's states, whether or not the system is a dynamic one (for which equilibrium could be relevant). Even in those physical systems where equilibrium could be relevant, (1) living systems cannot persist in isolation, and (2) the second principle of thermodynamics does not require that free energy be transformed into entropy along the shortest path: living organisms absorb energy from sunlight or from energy-rich chemical compounds and finally return part of such energy to the environment as entropy (generally in the form of heat and low free-energy compounds such as water and carbon dioxide).
A contribution to this line of study, and an attempt to solve those conceptual limits, has been given by Ilya Prigogine throughout all his research, that lead him also to win the Nobel prize in 1977. One of his major contributions was the concept of dissipative system.
Vol. 2 Pages 1266-1269 IEEE
Follow this link:
- Coronavirus: over 70% of critical care patients in UK are men - The Guardian [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Cholera and coronavirus: why we must not repeat the same mistakes - The Guardian [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- 'If your child is hungry, you will eat your rulers to feed your children' - CNN [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Millions Had Risen Out of Poverty. Coronavirus Is Pulling Them Back. - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Where did it go wrong for the UK on coronavirus? - CNN [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Potential coronavirus vaccine being tested in Germany could 'supply millions' by end of year - CNN [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- The pandemic and the influencer: will the lifestyle survive coronavirus? - The Guardian [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Why Georgia Is Reopening Amid the Coronavirus Pandemic - The Atlantic [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Has Sweden's coronavirus strategy played into the hands of nationalists? - The Guardian [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Coronavirus memes: These AI-generated memes are better than ones created by humans - Vox.com [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Coronavirus spares one neighborhood but ravages the next. Race and class spell the difference. - USA TODAY [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Life in Trumps Coronavirus Ghetto - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- The Gates aren't pinning their coronavirus hopes on the U.S. - Politico [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- New Coronavirus Test Offers Advantages: Just Spit and Wait - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Coronavirus is advancing in L.A., retreating in Bay Area - Los Angeles Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Trump Brings Religion Into the Coronavirus Culture War - The Atlantic [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Coronavirus in Chicago: How the mayor of the nation's 3rd-largest city is waging her biggest fight - USA TODAY [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Number of coronavirus cases from second warship outbreak nears 100 as Navy restricts information on pandemic - CNN [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- We the People, in Order to Defeat the Coronavirus - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- How Coronavirus Mutates and Spreads - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Coronavirus pandemic in the US: Live updates - CNN [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- The Coronavirus Still Is a Global Health Emergency, W.H.O. Warns - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- No leadership and no plan: is Trump about to fail the US on coronavirus testing? - The Guardian [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Midwest: Coronavirus-Related Restrictions And Reopenings - NPR [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- How New Mexico Flattened the Coronavirus Curve - The New York Times [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Rashes, headaches, tingling: the less common coronavirus symptoms that patients have - The Guardian [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Coronavirus Survivors Want Answers, and China Is Silencing Them - The New York Times [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Coronavirus numbers explained: Why Odisha is seeing a spike in new cases - The Indian Express [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- New Studies Add to Evidence that Children May Transmit the Coronavirus - The New York Times [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- In the Fight to Treat Coronavirus, Your Lungs Are a Battlefield - The New York Times [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- New evidence indicates coronavirus was infecting people in Europe and the US before the first official cases were reported - CNN [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- How Will the Coronavirus Change Us? - The Atlantic [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Coronavirus daily news updates, May 9: What to know today about COVID-19 in the Seattle area, Washington state and the nation - Seattle Times [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Coronavirus threatens a guarded tradition for many black Americans: Voting in person - CNN [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Youll Probably Never Know If You Had the Coronavirus in January - The Atlantic [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- What We Know About Coronavirus Mutations : Goats and Soda - NPR [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- US falls short in coronavirus testing in some areas of the country - CNN [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Three Children Have Died in N.Y. of Illness Linked to Virus: Live Updates - The New York Times [Last Updated On: May 9th, 2020] [Originally Added On: May 9th, 2020]
- Things feel so dark, Gov. Gretchen Whitmer says on riots, coronavirus and Midland flooding - MLive.com [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Covid-19: will the governments mixed messages lead to another surge? - The Guardian [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- The World Is Still Far From Herd Immunity for Coronavirus - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- How a decade of privatisation and cuts exposed England to coronavirus - The Guardian [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Teaching in the time of coronavirus: Finding creative ways to engage students - The San Diego Union-Tribune [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- These Athletes Had the Coronavirus. Will They Ever Be the Same? - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Battered by Coronavirus Outbreak, NYC Finally Moves Toward Reopening - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Coronavirus Showed How Globalization Broke the World - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- In Some Nations, Coronavirus Is Only One of Many Outbreaks - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Coronavirus FAQs: Is It Safer To Fly Or Drive? Is Air Conditioning A Threat? - NPR [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Coronavirus: The mystery of 'silent spreaders' - BBC News [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Utah sees another spike in coronavirus cases, third big day in a row - Salt Lake Tribune [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Its Not Whether You Were Exposed to the Coronavirus. Its How Much. - The New York Times [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- A second wave of coronavirus: When it could come, how long it could last and more - CNET [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Growing Data Show Blacks And Latinos Bear The Brunt Of COVID-19 : Shots - Health News - NPR [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Minneapolis, the Coronavirus, and Trumps Failure to See a Crisis Coming - The New Yorker [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Utah is averaging more than 200 new coronavirus cases a day over the past week as hot spots flare up from Logan to St. George - Salt Lake Tribune [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Just 2.3% of new coronavirus test results in Wisconsin were positive the lowest on record - Green Bay Press Gazette [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Coronavirus Testing: Should I Go For It Even If I Have No Symptoms? : Goats and Soda - NPR [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]
- Coronavirus in Florida: What you need to know Sunday, June 21 - TCPalm [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- ESPYS honoree Kim Clavel took a break from boxing to fight coronavirus - CNN [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Iceland now feels like the coronavirus never happened - CNN [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Lessons on Coronavirus Testing From the Adult Film Industry - The New York Times [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Pence Misleadingly Blames Coronavirus Spikes on Rise in Testing - The New York Times [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Putin has a 'disinfection tunnel,' Sweden feels isolated over coronavirus - CNBC [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Texas Governor Says 'No Reason Today To Be Alarmed' As Coronavirus Cases Set Record - NPR [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- What it means to come into close contact with a coronavirus case and your risk of infection - CNBC [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Coronavirus runs through crowded homes and must-do jobs, hitting people of color hard - San Francisco Chronicle [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- NJ hits top ranking in coronavirus analysis, showing positive trends and signs of hope - NorthJersey.com [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Coronavirus surges arent linked to one single cause - The Register-Guard [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Tens of thousands of Britons have died from coronavirus. But Boris Johnson is stoking a culture war. - CNN [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- High risk of coronavirus second wave as Australian shops and workplaces reopen, report says - The Guardian [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Florida sets another single-day coronavirus case record with nearly 4,000 infections - Tampa Bay Times [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- U.S. banks are 'swimming in money' as deposits increase by $2 trillion amid the coronavirus - CNBC [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Coronavirus shuts down Crowbar, the Orpheum and Skippers Smokehouse - Tampa Bay Times [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Global report: Trump says he ordered coronavirus testing to 'slow down' - The Guardian [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Russia reopens ahead of Victory Day and Putin referendum -- but coronavirus threat remains - CNN [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- In Beijing it looked like coronavirus was gone. Now we're living with a second wave - The Guardian [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Coronavirus Live News and Updates - The New York Times [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Flushing the Toilet May Fling Coronavirus Aerosols All Over - The New York Times [Last Updated On: June 22nd, 2020] [Originally Added On: June 22nd, 2020]
- Coronavirus: What's happening around the world Monday - CBC.ca [Last Updated On: June 22nd, 2020] [Originally Added On: June 22nd, 2020]
- Coronavirus could die out on its own, according to Italian expert: Report - silive.com [Last Updated On: June 22nd, 2020] [Originally Added On: June 22nd, 2020]