What is Hair Cloning?
Hair cloning is a promising treatment for androgenetic alopecia, or common genetic hair loss that is being actively researched by pioneering hair restoration physicians, like Dr. Bernstein in conjunction with Columbia University, hoping to be the first to develop a cure for hair loss. In hair cloning, a sample of a persons germinative hair follicle cells are multiplied outside the body (in vitro), and then they are re-implanted into the scalp with the hope that they will grow new hair follicles and, thus, new permanent hair.
This fascinating field is not only interesting because of the rapidly-developing nature of the science of cloning hair, but, more specifically, because hair cloning methods have the potential to yield a treatment that effectively cures common hair loss - something that scientists and physicians have been seeking for decades.
Hair cloning is a term that is often used to broadly describe a set of ideas on how to use laboratory techniques to solve the problem of hair loss. Technically, however, there is a difference between true hair cloning and the technique of hair multiplication for treating baldness. We will explore these differences in the next section.
In contrast to hair cloning, where germinative cells are multiplied outside the body in essentially unlimited amounts, in hair multiplication, donor hair follicles are removed from the scalp and then manipulated in a way that the total amount of hair is increased. This can involve using transected, or cut, hair follicles and implanting them directly into the scalp with the hope that the follicles will regenerate and grow a complete hair. Another technique uses plucked hair fragments rather than whole or transected follicles.
The concept behind hair multiplication using plucked hair is that it is an easy, non-invasive method of obtaining germinative cells. Also, the hair shaft of the plucked hair acts as a ready-made scaffold to introduce and align the germinative cells at the new site. The hope is that removing a small proportion of the germinative cells, through plucking, may provide enough tissue for the formation of a new follicle while not diminishing the original one. The problem with this method has been that plucking generally yields a hair with insufficient cells to induce a new follicle to form.
In one form of hair multiplication, hairs are plucked from the scalp or beard and then implanted into the bald part of the scalp. The idea is that some germinative cells at the base of the hair follicle will be pulled out along with the hair. Once the hair is re-implanted, these cells would be able to regenerate a new follicle. Microscopic examination of the plucked hair helps the doctor determine which hairs have the most stem cells attached and thus which are most likely to regrow. The procedure is called hair multiplication since the plucked follicles would regrow a new hair, potentially giving an unlimited supply.
The problem with this technique has been that the cells that are adherent to the hair shaft when it is plucked do not seem to play a major role in follicular growth, and the stem cells around the bulge region of the follicle, the ones most important for hair growth, are not harvested to any significant degree. Recently, it has been speculated that the addition of an extra-cellular matrix (ECM) to stimulate growth would make these plucked hairs more likely to survive after implantation and then grow into a fully developed hair. This, however, has been hard to document in clinical trials. (See ACell Extracellular Matrix)
A limitation of the newer method, using ECM, is that plucked hairs often do not contain enough germinative material to stimulate the growth of new hair, so only a small number of the hairs that are actually plucked are useful to transplant.
Another concern with this technique is that part of the new hair is derived from the skin in the recipient site, rather than being only from the transplanted hair follicle. At this point, we are hopeful that this newly formed hair (which has cells from both the donor and recipient areas) will be resistant to the miniaturizing actions of DHT and not disappear over time.
When it comes to cloning, hair follicles present a significant challenge. Hair follicles are too complex to be simply multiplied in a test-tube and are not whole organisms (like Dolly the Sheep, see below) so they cannot grow on their own. Fortunately, a pair of clever scientists, Drs. Amanda Reynolds and Colin Jahoda (now working with Dr. Christiano at Columbia University), seem to have made great headway in solving the dilemma.
In their paper Trans-Gender Induction of Hair Follicles, the researchers have shown that dermal sheath cells, found in the lower part of the human follicle, can be isolated from one person and then injected into the skin of another to promote the formation of new intact hair. The implanted cells interacted locally to stimulate the creation of full terminal (i.e. normal) hair follicles. Although this is not actually cloning (see the definition above), the dermal sheath cells can potentially be multiplied in a Petri dish and then injected in great numbers to produce a full head of hair. The word potentially is highlighted, as this multiplication has not yet been accomplished. It seems, however, that this hair induction process is the model most likely to work.
Another interesting aspect of their experiment is that the donor cells came from a male but the recipient, who actually grew the hair, was a female. The importance of this is that donor cells can be transferred from one person to another without being rejected. Since repeat implantations did not provoke the typical rejection responses, even though the donor was of the opposite sex and had a significantly different genetic profile, this indicates that the dermal sheath cells have a special immune status and that the lower hair follicle is one of the bodies immune privileged sites.
In addition, there is some evidence that the recipient skin can influence the look of the hair. Thus, the final appearance of the patient may more closely resemble the bald persons original hair, than the hair of the person donating the inducer cells. The person-to-person transfer of cells would be important in situations where there was a total absence of hair. Fortunately, in androgenetic alopecia (genetic hair loss) there is a supply of hair on the back and sides of the scalp that would serve as the source of dermal sheath cells, so the transfer between people would rarely be necessary.
Probably the most important aspect of this experiment is the fact that these inducer dermal sheath cells are fibroblasts. Fibroblasts, as it turns out, are among the easiest of all cells to culture, so that the donor area could potentially serve as an unlimited supply of hair.
There are a number of problems that still confront us in cloning hair. First, there is the need to determine the most appropriate follicular components to use (dermal sheath cells, the ones used in the Collin/Jahoda experiment, are hard to isolate and may not actually produce the best hair). Next, these extracted cells must be successfully cultured outside the body. Third, a cell matrix might be needed to keep them properly aligned while they are growing. Finally, the cells must be successfully injected into the recipient scalp in a way that they will consistently induce hair to grow.
Unlike Follicular Unit Transplantation (FUT), in which intact follicular units are planted into the scalp in the exact direction the surgeon wants the hair to grow, with cell implantation there is no guarantee that the induced hair will grow in the right direction or have the color, hair thickness or texture to look natural. To circumvent this problem, one might use the induced hair in the central part of the scalp for volume and then use traditional FUT for refinement and to create a natural appearance.
However, it is not even certain that the induced follicles will actually grow long enough to produce cosmetically significant hair. And once that hair is shed in the normal hair cycle, there are no assurances that it will grow and cycle again. (Normal hair grows in cycles that last 2-6 years. The hair is then shed and the follicle lies dormant for about three months before it produces a new hair and starts the cycle over again.)
A major technical problem to cloning hair is that cells in culture begin to de-differentiate as they multiply and revert to acting like fibroblasts again, rather than hair. Finding the proper environment in which the cells can grow, so that they will be maintained in a differentiated (hair-like) state, is a major challenge to the researchers and appears to be the single greatest obstacle to this form of therapy coming to fruition. This is not unlike the problems in cloning entire organisms where the environment that the embryonic cells grow in is the key to their proper differentiation and survival.
There are four main experimental techniques that have been recently described by Teumer. These are: 1) Implanting Dermal Papillae cells alone, 2) Placing DP cells alongside miniaturized follicles, 3) Implanting DP cells with keratinocytes (Proto-hairs), and 4) Cell Implantation using a Matrix.
See our Hair Cloning Methods page for descriptions and charts about current methods of study regarding hair cloning.
Finally, although remote, there may be safety concerns that cells that induce hair may also induce tumors, or exhibit malignant growth themselves. Once these obstacles have been overcome, there are still the requirements of FDA approval which further guarantees safety as well as effectiveness. This process involves three formalized stages of clinical testing and generally takes years.
On the status of cloning it is still a work in progress. Although there has been much recent success, and we finally have a working model for how hair cloning might eventually be accomplished, much work still needs to be done.
Cloning is the production of genetically identical organisms. The first clone of an adult animal was Dolly, the famous Edinburgh sheep. Although technically not an exact replica of her mother (and therefore not a true clone), the revolutionary part of the experiment was that it overturned the long-held view that non-sex cells of an adult (somatic cells) were differentiated to such a degree that they lost any potential to develop into a new adult organism. Scientists had believed that once a cell became specialized as a lung, liver, or any other type of adult cell, the change was irreversible as other genes in the cell became permanently inactive. The other major challenge was to be able to initiate the multiplication of the genetically altered cell and then to provide the proper environment in which the growth of the new organism could take place.
With Dolly, scientists transferred genetic material from the nucleus of a donor adult sheep cell to an egg whose nucleus, and thus its genetic material, had been removed. This egg, containing the DNA from a donor cell, had to be treated with chemicals or an electric current in order to stimulate cell division. Once the cloned embryo reached a suitable stage, it was transferred to a very hospitable environment - the uterus of another sheep - where it continued to develop until birth.
In contrast to replicating whole organisms, in genetic engineering, one alters the DNA of a particular cell so that it can manufacture proteins to correct genetic defects or produce other beneficial changes in an organism. The initial step in genetic engineering is to isolate the gene that is responsible for the problem. The next step is to clone (multiply) the gene. The last step is to insert the gene inside the cell so that it can work to alter bodily function.
The first gene causing hair loss in humans was discovered by Dr. Angela Christiano at Columbia University. Individuals with this gene are born with hair that soon falls out (as infant hair often does) but then never grows back. They mapped the disease to chromosome 8p21 in humans and they actually cloned a related hair loss gene in mice. Although a huge step forward, this gene is not the same as the one(s) that cause common baldness. Luckily, Dr. Christianos lab continues its work to isolate the genetic material responsible for androgenetic alopecia. We will keep you posted on their progress.
A new drug that is an activator of the Hedgehog pathway has been shown to stimulate hair growth in adult mice. The study showed that a topically applied medication can initiate the Hedgehog signaling pathway to stimulate hair follicles to pass from the resting to the growth stage of the hair cycle in mice. This technology has not yet been applied to humans. (See Hedgehog Signaling Pathway Could Yield Hair Growth, Hair Loss Treatment in the Hair Cloning News section)
Hair Cloning Methods Hair Cloning News Hair Transplant Surgery Before & After Hair Transplant Photos Medical Treatment of Hair Loss Hair Loss in Men
Go here to read the rest:
Hair Cloning & Multiplication | Bernstein Medical
- Cloning - The New York Times [Last Updated On: June 10th, 2016] [Originally Added On: June 10th, 2016]
- Cloning - Learn Genetics [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Cloning Fact Sheet - Genome.gov [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Reasons Against Cloning - VIDEOS & ARTICLES [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- How Cloning Works | HowStuffWorks [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Cloning - Wikipedia, the free encyclopedia [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- How Cloning Works | HowStuffWorks [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Let Us Reason [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- The Ethics of Human Cloning and Stem Cell Research ... [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Scratch Wiki [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning = Cruelty | Compassion in World Farming [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Wookieepedia - Wikia [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- ::Cloning:: - Mount Holyoke College [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- What is Cloning? (with pictures) - wiseGEEK [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Types, Technique, Animals and More [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- What is Cloning? - Learn Genetics [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Molecular Cloning [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Reasons Against Cloning - VIDEOS & ARTICLES [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Cloning Blues - TV Tropes [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Cloning (Stanford Encyclopedia of Philosophy) [Last Updated On: June 30th, 2016] [Originally Added On: June 30th, 2016]
- Cloning - Science Daily [Last Updated On: June 30th, 2016] [Originally Added On: June 30th, 2016]
- Cloning - Food and Drug Administration [Last Updated On: July 3rd, 2016] [Originally Added On: July 3rd, 2016]
- Human cloning - Wikipedia, the free encyclopedia [Last Updated On: July 8th, 2016] [Originally Added On: July 8th, 2016]
- Human Cloning: What is cloning? How to clone. Is cloning ... [Last Updated On: August 16th, 2016] [Originally Added On: August 16th, 2016]
- Human Cloning | The Center for Bioethics & Human Dignity [Last Updated On: August 19th, 2016] [Originally Added On: August 19th, 2016]
- News - Clonaid.com [Last Updated On: August 23rd, 2016] [Originally Added On: August 23rd, 2016]
- Cloning Fact Sheet [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Dolly (sheep) - Wikipedia, the free encyclopedia [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- DNA Cloning with Plasmid Vectors - Molecular Cell Biology ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Pros and Cons of Cloning - Buzzle [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Cloning - Wikipedia [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Mammoth - Wikipedia [Last Updated On: January 25th, 2017] [Originally Added On: January 25th, 2017]
- Molecular Cloning: Basics and Applications | Protocol [Last Updated On: January 26th, 2017] [Originally Added On: January 26th, 2017]
- Crustacean Cloning The Poetry of Science - ScienceBlog.com (blog) [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this 'Facebook Cloning' scam - NEWS10 ABC - NEWS10 ABC [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware Of 'Facebook Cloning' | 9news.com - 9NEWS.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of 'Facebook Cloning' | KGW.com - kgw.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this 'Facebook cloning' scam | WJHL - WJHL.com - WJHL [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this Facebook cloning scam | WFLA.com - WFLA [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- 20 years after Dolly the sheep, human cloning is no closer - Genetic Literacy Project [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of Facebook 'cloning' scam - USA TODAY [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Cloning Vector and its Characteristics | Chemistry Learning [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of 'Facebook Cloning' - KSDK.com [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Facebook cloning debunked - The i newspaper online iNews - iNews [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Don't fall for this Facebook cloning scam | WDTN - WDTN [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Hard Drive Cloning Software Why You Need It Acronis [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Cloning - The Hastings Center [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- This Crab Clones Its Allies by Ripping Them in Half - The Atlantic [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Watch out for this crazy Facebook cloning scam! - Komando [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Boffins create quantum cloning machine to intercept 'secure ... - The INQUIRER [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Call Kurtis Investigates: Triple Tag Team Scam Started With Cloned Facebook Profile - CBS Local [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Quantum Cloning Machine Reveals Clues That Could Protect Against Hacking - Photonics.com [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Steve Bannon wanted to make a movie about cloning, abortion, and ... - A.V. Club (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Police investigating recent reports of credit card cloning in Aiken ... - Aiken Standard [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Steve Bannon's Unproduced Movie About Cloning, Nazis, and Walt ... - Gizmodo [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Gang arrested for cloning debit cards, stealing money - The Hindu [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Phone cloning - Wikipedia [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Drive cloning in Windows 10 with free tools - Computerworld [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Why Google's Spanner Database Won't Do As Well As Its Clone - The Next Platform [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Scientists Are Close to Cloning a Woolly Mammoth - Popular Mechanics [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- 20 years after Dolly: Everything you always wanted to know about the cloned sheep and what came next - The Conversation US [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Scientists say we can clone a woolly mammoth. But should we? - Christian Science Monitor [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- 15 Animals That Have Been Successfully Cloned by Scientists - Interesting Engineering [Last Updated On: February 20th, 2017] [Originally Added On: February 20th, 2017]
- Must reads: Populism, sexism, cloning, and rudeness - GlobalComment.com [Last Updated On: February 20th, 2017] [Originally Added On: February 20th, 2017]
- Facebook does it again. WhatsApp launches revamped Status, cloning Snapchat - Catch News [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- It's Been 20 Years Since We Cloned A Sheep. Why Haven't We ... - GOOD Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- Reviving woolly mammoths will take more than two years - BBC News [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- How to clone your PC hard drive using Macrium Reflect - Windows Central [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Pabrai And The Shameless Cloning Portfolio - Seeking Alpha [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 Years After Dolly, Where Are We With Cloning? - Inverse [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 years after Dolly the sheep's debut, Americans remain skeptical ... - Pew Research Center [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 years after Dolly: Everything you always wanted to know about ... - Bizcommunity.com [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- Another cloning success shows technology being used by everyday graziers - ABC Online [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- 20 years after Dolly the sheep, potential of cloning remains unclear - CNN [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- More lessons from Dolly the sheep: Is a clone really born at age zero ... - Salon [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- 20th Anniversary of Dolly the Cloned Sheep | Men's Health - Men's Health [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- The Angels had two No. 97s on the basepaths, may be cloning their players - MLB.com [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]
- 20 Years After Dolly: Cloning Past, Present and Future - KQED [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]