On December 10, 2020, Elizabeth Ann made history just by being born. She isnt a British royal, an American married to a British royal, a movie stars daughter, or even human for that matter. Elizabeth Ann is a ferretbut perhaps the most famous ferret of all time.
More specifically, she is the clone of a black-footed ferret named Willa who has been dead for more than 30 years. Elizabeth Anns momentous birth marks the first successful cloning of an endangered species native to North America (endangered species like the gaur, or Indian bison, and the mouflon, a wild sheep originally found in Corsica and Sardinia, have been cloned previously). If she can breed successfully, Elizabeth Ann will add valuable genetic diversity to the very small estimated population of around 600 remaining black-footed ferrets, which are all descended from just seven animals. But low genetic diversity isnt the only thing standing in the way of these ferrets making a comeback. The other major threat is disease.
Diseases are a huge problem for many endangered species, but, as the previous year has emphasized all too well, diseases that circulate in animals can also have disastrous consequences if they jump to humans. Genetic engineering of animals in the wild might offer us a way to protect not only our furry friends and feathered compadres, but ourselves as well. Although still in the early stages of research, scientists around the world are working on numerous projects to engineer animals to be resistant to diseases that can impact humans as well, including plague, Lyme disease, dengue fever, and Zika.
Black-footed ferrets like Elizabeth Ann are especially susceptible to plague. While many of us have not given much thought to plague since our medieval history class, the bacterium responsible for this deadly diseaseYersinia pestisis very much alive and well, circulating in populations of small mammals throughout North and South America, Africa, and Asia.
Its all over the western part of the United States, says Bridget Baumgartner, a molecular biologist involved in the black-footed ferret conservation project at Revive & Restore, a wildlife organization that promotes the use of biotechnology in conservation. Unlike the black-footed ferret, plague isnt native to the Americasscientists think it was introduced a little over one hundred years ago, when the first known outbreak hit San Francisco in 1900. Because its new here, the black-footed ferret succumbs so quickly that they dont ever develop an immune response to it, says Baumgartner.
Right now, conservationists have to individually vaccinate each black-footed ferret against plague. While this is effective for now, it may not be a good solution in the long-run. It just creates this problem where theyre always going to be dependent on humans for their ability to survive in the wild. And thats not at all the goal of the program, Baumgartner says.
Genetic engineering might be the key to this frankly adorable species long-term survival in the wild.
Normally, different flavors of antibodies are made by B cells through a random genetic cut-and-paste process called somatic recombination. If a B cell has antibodies that are useful (i.e. they can bind to an antigen in a vaccine or a pathogen), that B cell gets copied many times over and refined. The immune system is then able to produce lots of the correct type of antibody, helping the body fight off the infection. But sometimes the infection moves faster than the immune system can respond, spelling disaster for the unfortunate person or animal.
Genetic engineering provides a shortcut. Instead of relying on the time-consuming process of B cells multiplying, scientists can insert the genetic code to make an anti-plague antibody into an animals DNA and then instruct any cell type to make these antibodies. That way, animals dont have to wait for a vaccine to develop a large group of cells capable of making an anti-plague antibodythey will be born with a population of cells that are constantly churning out anti-plague antibodies, keeping them protected from the disease. Even better, these genetic instructions would be passed down to the animals offspring as well, eliminating the need for further interventions.
But figuring out exactly how to do this is tricky and with fewer than a thousand black-footed ferrets left in existence, scientists dont want to troubleshoot the process by practicing on this endangered species. Instead, theyre starting with lab mice, whose genetics are extremely well-studied. Weve created a transgenic line of mice that express antibodies against plague in their germline, and can be passed on from generation to generation, says Baumgartner. Once mouse testing is complete, researchers would also perform testing in the more common domestic ferret to confirm safety and efficacy before implementing this technique in the black-footed ferret.
Baumgartner says that if this genetic engineering is successful, it will not only keep the ferrets from dying of the disease, it will also keep them from transmitting it. While engineering plague resistance in the black-footed ferret is largely for conservation purposes, blocking transmission is an important factor if scientists ever want to apply this technique to other species in order to protect humans. Perhaps in the future, this genetic engineering trick could be applied to other animals that transmit plague to humans (either through bites or via fleas)like prairie dogs in the United States, black rats in Madagascar, or great gerbils in Kazakhstan.
Other projects are more directly targeted at reducing human disease by engineering wildlife. Kevin Esvelt, director of the Sculpting Evolution group at MIT, has turned his attention to the white-footed mouse. With their big eyes and fuzzy white bellies, this species might not look dangerous, but in fact, they are an important natural reservoir for Lyme disease bacteria, which sicken an estimated 300,000 Americans every year.
While ticks are generally blamed for spreading Lyme disease, this is only half the story. Ticks arent born carrying Lyme disease bacteria; they pick up the bacteria when they feed on infected small mammals like the white-footed mouse. They can then transmit the bacteria to their next host, sometimes an unfortunate human. While deer are an important food source for the tick, they dont actually carry the bacteria andexcept in cases where it is possible to totally eliminate the deer populationsthere is insufficient evidence that reducing deer numbers helps control Lyme disease.
Thats why Esvelt and his team are looking for solutions that target the white-footed mouse. The scientists are searching for the most effective antibodies against Lyme disease in white-footed mice. Once they identify these antibodies, they could build instructions for these antibodies into the genome, just like scientists want to do with the black-footed ferret and plague antibodies. The team could then raise lots and lots of mice that constantly produce antibodies against Lyme disease, making them immune to Lyme. These mice could then be released into areas where Lyme disease is prevalent in order to reduce disease transmission.
Esvelt says that genetic instructions for antibodies that confer Lyme disease protection are already known in humans and in laboratory mice, and acknowledges that it would probably be easier to just take a protective gene from one of these species and put it in a white-footed mouse. But members of the communities in which the mice might be releasedNantucket and Marthas Vineyardexpressed that they would prefer that white-footed mice were only engineered to have genes from other individuals of their species, not genes from different species.
Even if its more difficult this way, Esvelt says community members should be able to have the final say. Its their environment, so its their call.
This is in accordance with research showing that the public is more concerned about transgenic animals (animals with genes from other species) than cisgenic animals (which are genetically modified, but with added genes from the same species). Cisgenic animals may be perceived as more natural, since their genetic structure is one that is technically possible in nature (i.e. it could occur through breeding or natural mutation) and thus may be seen as less problematic. Even if its more difficult this way, Esvelt says community members should be able to have the final say. Its their environment, so its their call.
Esvelt says that when it comes to ecological engineering, input from the communities that will be affected is extremely important. If scientists develop a new drug, he points out, you can always choose not to take it. But if scientists alter the place where you live by releasing genetically engineered animals, you cant choose not to be affected by the consequences.
If we deny [communities] a voice in what the technology looks like, if we dont tell them what were doing and invite their concerns and criticism and suggestions from the early experimental design stage when it matters, then were denying them a voice in decisions intended to affect them; where they wont be able to opt out, Esvelt says.
Although the team plans to start slowlyreleasing and analyzing the mice first on uninhabited islands and then on larger islands like Nantucketthe end goal is for Lyme-resistant mice to be implemented on the mainland, potentially greatly reducing the burden of Lyme disease in the United States.
Even further down the line, Esvelt says that lessons learned during this project could also be relevant for other diseases. For example, the white-footed mouse and its close relative the deer mouse both carry and transmit hantavirus to humans, causing severe and often fatal lung infections. Thus, engineering disease resistance in these mice could help protect humans from multiple types of dangerous pathogens.
Of course, no discussion of genetic engineering of wildlife is complete without including the worlds deadliest animal: the mosquito. Because they spread so many types of pathogenslike those that cause Zika, dengue, West Nile, yellow fever, and malaria, just to name a fewmosquitos are responsible for hundreds of thousands of human deaths each year. Omar Akbari, a professor of cell and developmental biology at the University of California, San Diego, wants to engineer a less-deadly mosquito. Among other creatures, Akbaris lab works with a species of mosquito called Aedes aegypti. Native to Africa, the Aedes aegypti mosquito now thrives on every continent except Antarctica, sowing epidemics of yellow fever, dengue, chikungunya, and Zika, which have caused tremendous amounts of human suffering and death.
So far, Akbari and his collaborators have created Aedes aegypti mosquitos that are resistant to dengue and Zika virus. But the work doesnt stop thereAkbari says that these genetic engineering techniques could be applied to other species of mosquitos and other diseases. I think it can work for many different disease vectors, Akbari says. There are a lot of mosquito species on Earthover 3,500 different speciesbut theres really only a handful of them that are transmitting pathogens to us. By targeting these few species, scientists could have a major global health impact.
But while genetically engineering wild species could potentially have major benefits for the species themselves and the humans they share an environment with, the scientists working on these projects emphasize that caution is needed.
Careful evaluation of downstream ecological effects is essential. If the genetic engineering causes the species to become more abundant, scientists need to make sure that it doesnt harm the species that they consume or compete with. If the engineered species becomes less abundant, they need to make sure that doesnt impact animals that rely on that species for food. Just like plants and animals, pathogens may also fill a newly vacated ecological nicheso if animals no longer host one type of pathogen, scientists need to make sure that a new pathogen wont swoop in to claim the newly available real estate.
But ecology is a complex science and even with careful assessment, there may be unforeseen problems and scientists need to have a back-up plan if things go wrong. It comes down to being able to take it back. So thats one of the things thats scariest about itif we put [a genetically modified species] out in the wild, its not like we can just go and get it again, Baumgartner says. The safety mechanisms have to be developed in parallel with these genetic interventions.
Scientists are working on building these safety mechanisms into the animals themselves. If scientists want the genes for disease resistance to spread throughout an animal population, they can use a CRISPR-mediated gene drivea technique that alters the probability that the gene of interest will be inherited by offspring. While most genes have a 50 percent chance of being inherited by an organisms babies, scientists can use a gene drive to increase this likelihoodtheoretically up to 100 percent. Scientists do this by giving the animal genetic code not only for the disease resistance gene, but also code to build a CRISPR system to cut out the gene they dont want. The offspring of a modified organism and a wild organism starts out with one copy of the disease resistance gene and one copy of the wild gene. But the CRISPR system it inherited from the modified parent snips out the copy of the wild gene, which gets replaced by the modified, disease resistance gene. This happens every time a modified organism mates, resulting in all the offspring, and the offsprings offspring, and so on, having two copies of the disease resistance gene.
But once this drive gets going, it could result in this gene spreading to every animal of this species in the entire world, so researchers want to make sure there is a way to hit the brakes.
Scientists are experimenting with different ways to create gene drives that are self-limiting: drives that can be used to spread a gene throughout a local population but wont spread indefinitely. One way to do this is to split up the components that the gene drive needs to function. For example, in a split drive, scientists can split the drive into part A and part B and put them in different places on the genome. When an organism has part A and part B, the gene drive functions and all of the animals offspring will have the gene of interestin this case, the gene that makes it resistant to disease. But scientists can also make it costly for an organism to carry part A; maybe part A makes the animal just a little bit less able to survive or reproduce. After several generations, natural selection will eventually eliminate part A from the population. Without part A, the drive no longer functions, and the gene of interest will once again only have a 50 percent chance of being inherited.
More From NEO.LIFE
Can Cloned Pigs Save Dying Humans?
Why replacement organs will come from a farm.
Scientists still need to do more testing on the various ways to put the brakes on a gene drive to make sure that they wont go awry once the animals are released into the wild. Currently, genetic modification is regulated on a country- or continent-level basis, which may be problematic as releasing a gene drive in one country could potentially affect many surrounding countries. In the United States, regulation of genetically modified organisms falls under the Coordinated Framework for Regulation of Biotechnology, which includes the FDA, USDA, and the EPA. Regulation is a contentious subject: Debates at the United Nations have turned into yelling matches and critics have argued that current regulations do not take into account input from local communities, who may be most affected by the release of gene-drive organisms.
Attempts to modify nature will always be haunted by early, carelessly initiated biocontrol effortslike the introduction of cane toads in Australia or mongooses in Hawaiithat had disastrous consequences for native wildlife. More recent failures have been less spectacularly devastating but still concerning; for example, a fly introduced to eat an invasive weed in Australia also appears to serve as a pollinator for it. In another case, gall flies were introduced to control a different invasive weed in the American West. Unfortunately, the fly larvae turned out to be a great source of nutrition for deer mice. As the deer mouse population increased, so too did the levels of hantavirus, which is carried by mice and can be deadly to humans. Clearly, more exhaustive evaluation of ecosystem effects was warranted in these scenarios.
Even with careful testing, assessment, and regulation, its possible that something could go wrong. The natural world is a complicated placeeven within a single square mile, it might not be possible to fully understand the interactions of every species of mammal, reptile, insect, plant, parasite, bacteria, fungus, and virus and how these interactions would respond to changes in the ecosystem.
As scientists and bioethicists have pointed out, many seemingly beneficial genetic changes could have catastrophic consequences. For example, if scientists engineered a species of coral to be resistant to climate change, it might be able to outcompete all of the other coral species on the reef, resulting in a loss of coral biodiversity and negative impacts on other creatures living in the reef ecosystem. Engineering animals to be pathogen-resistant puts new evolutionary pressures on the pathogen, which could cause it to change in dangerous ways: It might become more virulent or evolve the ability to infect different species, ultimately increasing instead of decreasing the burden of human disease.
However, while there are tangible risks of unforeseen consequences for releasing genetically engineered wildlife, there also could be serious consequences of not implementing these technologies. If you have a problem like malaria, for example, with no really great solutions, Akbari says, you have the risk of people dying if you dont use the new technology. Eventually, well need to choose whether to risk altering ecosystems with genetic engineering or risk the lives of humans and endangered species by foregoing it.
Read more:
Cloning Wildlife and Editing their Genes to Protect Them and Us - NEO.LIFE
- Cloning - The New York Times [Last Updated On: June 10th, 2016] [Originally Added On: June 10th, 2016]
- Cloning - Learn Genetics [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Cloning Fact Sheet - Genome.gov [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Reasons Against Cloning - VIDEOS & ARTICLES [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- How Cloning Works | HowStuffWorks [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Cloning - Wikipedia, the free encyclopedia [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- How Cloning Works | HowStuffWorks [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Let Us Reason [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- The Ethics of Human Cloning and Stem Cell Research ... [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Scratch Wiki [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning = Cruelty | Compassion in World Farming [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Wookieepedia - Wikia [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- ::Cloning:: - Mount Holyoke College [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- What is Cloning? (with pictures) - wiseGEEK [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Cloning - Types, Technique, Animals and More [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- What is Cloning? - Learn Genetics [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Molecular Cloning [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Reasons Against Cloning - VIDEOS & ARTICLES [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Cloning Blues - TV Tropes [Last Updated On: June 21st, 2016] [Originally Added On: June 21st, 2016]
- Cloning (Stanford Encyclopedia of Philosophy) [Last Updated On: June 30th, 2016] [Originally Added On: June 30th, 2016]
- Cloning - Science Daily [Last Updated On: June 30th, 2016] [Originally Added On: June 30th, 2016]
- Cloning - Food and Drug Administration [Last Updated On: July 3rd, 2016] [Originally Added On: July 3rd, 2016]
- Human cloning - Wikipedia, the free encyclopedia [Last Updated On: July 8th, 2016] [Originally Added On: July 8th, 2016]
- Human Cloning: What is cloning? How to clone. Is cloning ... [Last Updated On: August 16th, 2016] [Originally Added On: August 16th, 2016]
- Human Cloning | The Center for Bioethics & Human Dignity [Last Updated On: August 19th, 2016] [Originally Added On: August 19th, 2016]
- News - Clonaid.com [Last Updated On: August 23rd, 2016] [Originally Added On: August 23rd, 2016]
- Cloning Fact Sheet [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Dolly (sheep) - Wikipedia, the free encyclopedia [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- DNA Cloning with Plasmid Vectors - Molecular Cell Biology ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Pros and Cons of Cloning - Buzzle [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Cloning - Wikipedia [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Mammoth - Wikipedia [Last Updated On: January 25th, 2017] [Originally Added On: January 25th, 2017]
- Molecular Cloning: Basics and Applications | Protocol [Last Updated On: January 26th, 2017] [Originally Added On: January 26th, 2017]
- Crustacean Cloning The Poetry of Science - ScienceBlog.com (blog) [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this 'Facebook Cloning' scam - NEWS10 ABC - NEWS10 ABC [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware Of 'Facebook Cloning' | 9news.com - 9NEWS.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of 'Facebook Cloning' | KGW.com - kgw.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this 'Facebook cloning' scam | WJHL - WJHL.com - WJHL [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Don't fall for this Facebook cloning scam | WFLA.com - WFLA [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- 20 years after Dolly the sheep, human cloning is no closer - Genetic Literacy Project [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of Facebook 'cloning' scam - USA TODAY [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Cloning Vector and its Characteristics | Chemistry Learning [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Beware of 'Facebook Cloning' - KSDK.com [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Facebook cloning debunked - The i newspaper online iNews - iNews [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Don't fall for this Facebook cloning scam | WDTN - WDTN [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Hard Drive Cloning Software Why You Need It Acronis [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Cloning - The Hastings Center [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Hair Cloning & Multiplication | Bernstein Medical [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- This Crab Clones Its Allies by Ripping Them in Half - The Atlantic [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Watch out for this crazy Facebook cloning scam! - Komando [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Boffins create quantum cloning machine to intercept 'secure ... - The INQUIRER [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Call Kurtis Investigates: Triple Tag Team Scam Started With Cloned Facebook Profile - CBS Local [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Quantum Cloning Machine Reveals Clues That Could Protect Against Hacking - Photonics.com [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Steve Bannon wanted to make a movie about cloning, abortion, and ... - A.V. Club (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Police investigating recent reports of credit card cloning in Aiken ... - Aiken Standard [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Steve Bannon's Unproduced Movie About Cloning, Nazis, and Walt ... - Gizmodo [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Gang arrested for cloning debit cards, stealing money - The Hindu [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Phone cloning - Wikipedia [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Drive cloning in Windows 10 with free tools - Computerworld [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Why Google's Spanner Database Won't Do As Well As Its Clone - The Next Platform [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Scientists Are Close to Cloning a Woolly Mammoth - Popular Mechanics [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- 20 years after Dolly: Everything you always wanted to know about the cloned sheep and what came next - The Conversation US [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Scientists say we can clone a woolly mammoth. But should we? - Christian Science Monitor [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- 15 Animals That Have Been Successfully Cloned by Scientists - Interesting Engineering [Last Updated On: February 20th, 2017] [Originally Added On: February 20th, 2017]
- Must reads: Populism, sexism, cloning, and rudeness - GlobalComment.com [Last Updated On: February 20th, 2017] [Originally Added On: February 20th, 2017]
- Facebook does it again. WhatsApp launches revamped Status, cloning Snapchat - Catch News [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- It's Been 20 Years Since We Cloned A Sheep. Why Haven't We ... - GOOD Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- Reviving woolly mammoths will take more than two years - BBC News [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- How to clone your PC hard drive using Macrium Reflect - Windows Central [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Pabrai And The Shameless Cloning Portfolio - Seeking Alpha [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 Years After Dolly, Where Are We With Cloning? - Inverse [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 years after Dolly the sheep's debut, Americans remain skeptical ... - Pew Research Center [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- 20 years after Dolly: Everything you always wanted to know about ... - Bizcommunity.com [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- Another cloning success shows technology being used by everyday graziers - ABC Online [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- 20 years after Dolly the sheep, potential of cloning remains unclear - CNN [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- More lessons from Dolly the sheep: Is a clone really born at age zero ... - Salon [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- 20th Anniversary of Dolly the Cloned Sheep | Men's Health - Men's Health [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- The Angels had two No. 97s on the basepaths, may be cloning their players - MLB.com [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]