By Jove! Jupiter Shows Its Stripes and Colors – Newswise

Posted: May 11, 2021 at 11:44 pm

Newswise Three striking new images of Jupiter show the stately gas giant at three different types of light infrared, visible, and ultraviolet. The visible and ultraviolet views were captured by the Wide Field Camera 3 on theHubble Space Telescope, while the infrared image comes from the Near-InfraRed Imager (NIRI) instrument atGemini Northin Hawaii, the northern member of theinternational Gemini Observatory, a Program of NSFs NOIRLab. All of the observations were taken simultaneously (at 15:41 Universal Time) on 11 January 2017.

These three portraits highlight the key advantage of multiwavelength astronomy: viewing planets and other astronomical objects at different wavelengths of light allows scientists to glean otherwise unavailable insights. In the case of Jupiter, the planet has a vastly different appearance in the infrared, visible, and ultraviolet observations. The planets Great Red Spot the famous persistent storm system large enough to swallow the Earth whole is a prominent feature of the visible and ultraviolet images, but it is almost invisible at infrared wavelengths. Jupiters counter-rotating bands of clouds, on the contrary, are clearly visible in all three views.

Observing the Great Red Spot at multiple wavelengths yields other surprises the dark region in the infrared image is larger than the corresponding red oval in the visible image. This discrepancy arises because different structures are revealed by different wavelengths; the infrared observations show areas covered with thick clouds, while the visible and ultraviolet observations show the locations ofchromophores the particles that give the Great Red Spot its distinctive hue by absorbing blue and ultraviolet light.

The Great Red Spot isnt the only storm system visible in these images. The region sometimes nicknamed Red Spot Jr. (known to Jovian scientists as Oval BA) appears in both the visible and ultraviolet observations[1]. This storm to the bottom right of its larger counterpart formed from the merger of three similar-sized storms in 2000[2]. In the visible-wavelength image, it has a clearly defined red outer rim with a white center. In the infrared, however, Red Spot Jr. is invisible, lost in the larger band of cooler clouds, which appear dark in the infrared view. Like the Great Red Spot, Red Spot Jr. is colored by chromophores that absorb solar radiation at both ultraviolet and blue wavelengths, giving it a red color in visible observations and a dark appearance at ultraviolet wavelengths. Just above Red Spot Jr. in the visible observations, a Jovian superstorm appears as a diagonal white streak extending toward the right side of Jupiters disk.

One atmospheric phenomenon that does feature prominently at infrared wavelengths is a bright streak in the northern hemisphere of Jupiter. This feature a cyclonic vortex or perhaps a series of vortices extends 72,000 kilometers (nearly 45,000 miles) in the east-west direction. At visible wavelengths the cyclone appears dark brown, leading to these types of features being called brown barges in images from NASAs Voyager spacecraft. At ultraviolet wavelengths, however, the feature is barely visible underneath a layer of stratospheric haze, which becomes increasingly dark toward the north pole.

Similarly, lined up below the brown barge, four large hot spots appear bright in the infrared image but dark in both the visible and ultraviolet views. Astronomers discovered such features when they observed Jupiter in infrared wavelengths for the first time in the 1960s.

As well as providing a beautiful scenic tour of Jupiter, these observations provide insights about the planets atmosphere, with each wavelength probing different layers of cloud and haze particles. A team of astronomers used the telescope data to analyze the cloud structure within areas of Jupiter where NASAsJunospacecraft detected radio signals coming from lightning activity.

The scientific story behind these striking images is told in full in a newNOIRLab Stories blog post. As well as discovering the science behind these images, we invite you to inspect observations of Jupiter at home! Three interactive images let you compare observations of Jupiter at different wavelengths and peer beneath the gas giants clouds:

The Gemini North observations were made possible by the telescopes location within the Maunakea Science Reserve, adjacent to the summit of Maunakea, acknowledges the observation teams leader, Mike Wong of the University of California, Berkeley. We are grateful for the privilege of observing Kawela (Jupiter) from a place that is unique in both its astronomical quality and its cultural significance.

More information on the infrared observations from Gemini is provided in the NOIRLab press releaseGemini Gets Lucky and Takes a Deep Dive Into Jupiters Clouds.

[1] While it appears red in Hubbles visible-light image of Jupiter taken in January 2017, Red Spot Jr. does not always appear red. It was white when it first formed but turned red several years later. It has changed color since then and once again appears white.

[2] The three storms that merged to form Red Spot Jr. in 2000 were similar in size to each other and similar in size to Red Spot Jr. Interestingly, Red Spot Jr. did not become much larger than any of the three individual storms after they merged.

NSFs NOIRLab(National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the internationalGemini Observatory(a facility ofNSF,NRCCanada,ANIDChile,MCTICBrazil,MINCyTArgentina, andKASIRepublic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), andVera C. Rubin Observatory(in cooperation withDOEsSLACNational Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement withNSFand is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Duag (Kitt Peak) in Arizona, on Maunakea in Hawaii, and on Cerro Tololo and Cerro Pachn in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by AURA.

Read this article:

By Jove! Jupiter Shows Its Stripes and Colors - Newswise

Related Posts