Businesses still dont have a clear understanding of what to expect when it comes to the ROI of AI. Many believe that AI is just like any other software solution: the returns should, in theory, be immediate. But this is not the case. In addition, business leaders are often duped into thinking the path to ROI is a lot smoother than it is when it comes to AI because AI vendors tend to exaggerate the results their software generates.
In reality, identifying a metric to reliably measure the impact AI is having at a business is very hard.
In this article, we delve deeper into how business leaders should think about identifying ROI metrics that might help them understand the return they could generate from AI projects. To do this, we explore insights from interviews with three experts who were on our AI in Industry podcast this past month.
Special thanks to our three interviewees:
You can listen to our full playlist of episodes in our AI ROI playlist from the AI in Industry podcast. This article is based in large part on all three of these interviews:
Subscribe to the AI in Industry podcast wherever you get your podcasts:
We begin our analysis with a discussion of how to measure the ROI of AI.
AI projects inherently involve a level of uncertainty and experimentation before they can be deemed successful. In a small number of AI use-cases, identifying a measurable metric for projected returns may be relatively simple. For instance, in predictive maintenance applications for the manufacturing sector, businesses can link the returns directly to a reduction in maintenance costs or reduction in machinery downtimes.
But in other applications, such as improving customer experiences in banking, identifying a small number of reliable metrics to measure success is far more challenging.
Unless businesses have a clear understanding of the returns, they stand to risk losing on their AI investments. One way to ensure an AI project has a measurable metric is to choose a specific business problem where there already exists a non-AI solution and results are being measured and tracked.
Jan Kautz, VP of Learning and Perception Research at NVIDIA, who we interviewed for our previous podcast series on getting started with AI, seemed to agree that developing an AI solution for an existing business problem might be easier when it comes to measuring success rather than developing a completely new AI use-case with no precedent:
The danger of doing something completely new in AI is that you dont actually know if what you are doing is actually correct because you have nothing to compare it to. I would suggest banks to pick an area where they already have an existing system in place so that you can compare what the results of the AI system are and know if you are at least getting better results than the existing system
Business leaders also need to understand that in order to deploy an AI project across an organization, they not only require data scientists, but also data engineers. Data scientists are those that develop machine learning algorithms for a particular capability.
Data engineers usually undertake the task of implementing the solution across the enterprise. This might involve identifying if the existing data infrastructure is set up in a sustainable way that will allow AI systems to function smoothly over time and across the organization or that the devops process is capable of sustaining AI projects.
Narayanan believes most successful AI projects that can show positive results will involve data scientists working in collaboration with data engineers. Input from these employees is critical to understanding what a measurable metric of return might because they have the deepest understanding of what the AI system can do.
But these employees usually lack the insight to connect technical benefits to the overall business gains, which needs to come from the subject-matter experts in the domain into which AI is being applied.
Business leaders need to take into account both these perspectives to truly understand what benefits they are likely to get from their AI projects today. This will also help them accurately analyze what they want these AI benefits to look like in the future and tweak their systems towards that eventuality.
According to Martin, in order to successfully realize returns from AI projects, businesses need to figure out how to test their initial assumptions, experiment with AI systems, and identify use-cases as quickly as possible.
Testing whether these initial pilot projects have been successful means measuring the performance of the AI system in the task that it is being applied to.
Measuring success in these initial projects can even go wrong in ways that are not related to the technical challenges involved with AI. For instance, if a business implements an AI customer service software and only a few users are introduced to it because of ineffective marketing campaigns, measuring the returns of the AI system become even more challenging.
This is because the AI system might have been designed perfectly, but the pilot test might not have been accurately representative of whether any returns gained will actually lead to gains when deployed across the organization.
According to Martin, its critical for business leaders to understand that pilot test projects must not be run at scale across the enterprise. Enacting a large project, such as completely overhauling a fraud detection system at a bank, should only be done after careful analysis of the results from several experimental pilot projects. This is in line with Andrew Ngs advice to shoot for first AI projects with 6-12 month timeframes, not massive multi-year roll-outs.
Leaders need to think about this in phases, where the first step is to identify which small AI projects can potentially help the business gain knowledge about working with data and AI capabilities.
This doesnt mean that the smaller AI projects dont need to result in any success metrics. Rather, it means that in some cases, the pilot that shows the most immediate returns may not be the ideal first step for enterprise-wide adoption given a companys goals and long-term AI strategy. Leaders should focus on AI being a long-term skillset that is attained in incremental steps.
In order to measure a specific return, businesses also need to establish what kind of budgets they need for AI projects.
Unlike simple software automation, where costs are much easier to calculate, predicting the budgetary requirements for AI projects is more complex. Martin added that this was one of the more common AI-related questions that business leaders ask him. He said:
If a business leader is looking to answer questions like how much budget an AI project might require before starting the project, the best advice I can give businesses is to first ask how much budget can they realistically allocate to AI projects and then plan around that figure. AI projects are not easy to budget for because you dont know whats going to work and what is not; it involves a lot of experimentation. A business might not be able to ascertain how many such experiments they might need to run before finding a valuable use-case.
Martin stresses the fact that businesses need to think about AI from a long-term strategic perspective. They will have to make a decision on whether they are an AI company or not. Being an AI company means there will be a period of constant experimentation with uncertain results that could sometimes even take 6 months of experimentation to yield any noticeable results.
A recent article on MIT Sloan Business Review states that new ways of working and new management strategies (what might be called change management) are among the largest factors keeping most AI initiatives from generating ROI. Our own research arrives at the same conclusion.
Theres also no guarantee that an AI project will not go above budget, given the aforementioned uncertainty and experimentation involved. Butthis will give the data science team leaders an idea of how many experiments they might be able to conduct realistically and which ones they might need to prioritize.
One big challenge that many businesses might be grappling with when it comes to AI likely lies in ensuring that every dollar that goes into AI projects sees a significant return. Getting a return as soon as possible is the ideal business scenario.
Narayanan spoke about what misconception business leaders might have about measuring returns from AI :
Most of our knowledge around what AI can do for business stems from well-marketed examples in the news media. We find that most of these use-cases have been business problems that are well defined in nature. For example, we have seen reports of AI software beating the best human chess players or Beating humans in Alpha Go These are problems that have definitive end points. But when it comes to the most common business problems in fortune 500 companies. These do not have definite outcome.
What Narayanan seems to be articulating is that businesses might ask questions such as, Is our next product launch going to succeed? These questions are significantly more open-ended than a board game with definitive results. The term success might mean different things to different people or teams within an organization.
It might be hard to frame a clear question with a definitive answer for business problems. These questions at best might indicate that their problem statements can be extremely hazy and complex.
It might be impossible for any firm to look at a bucket of data and report how much business value might be gained from leveraging that data given the right kind of algorithms. This might be hard to digest for business leaders, but they need to expect uncertainty when it comes to AI.
This is not a traditional business mindset in many industries. According to Narayanan:
This is a cultural shift in the way of thinking of about how data might be critical for AI success. Leaders need to think about how AI can solve a business problem at scale for the enterprise, that is aligned with their business objectives as a whole while being highly sustainable.
In this section, we put forth a list of frameworks that business leaders can follow in order to maximize the possibility of gaining positive returns from their AI projects and effectively measuring it as such.
Traditionally in business, the term ROI usually corresponds to short-term financial gain, often in terms of improved revenue. AI is a broad technology and sticking to this traditional method of defining ROI might not be the best place to start for businesses. For instance, AI might very well be used to potentially increase revenue in an application.
However, AI can also be used to reduce costs, improve customer experience, or increase the productivity of a specific team within the business. The first step to understanding AI ROI might be to associate the returns with any types of positive business outcome, not necessarily financial gains, including leveling up a teams AI-related skillset.
Carmona said that in his experience, there have been several instances in which businesses have needed to invest funds in an AI project as it is being built due to budgetary constraints.
At the same time, business leaders might be looking for immediate returns on their AI investments. According to Carmona, balancing these two factors (uncertainty in AI projects and gaining returns fast) is something business leaders have to figure out before starting AI projects of any kind.
He spoke about a particular framework used by Microsoft (called the Agile AI framework) to find a balance between the two. We detail the steps involved in this framework below with insights from the interview:
Narayanan stated that one of the critical things for business leaders to understand about measuring the returns of AI projects is to first frame the business question that AI is being applied to in a way that is specific.
For instance, leaving aside the technical concerns, businesses first need to ask questions such as Is AI being used to solve a problem in the rate of growth of the organization, or is it being used to improve the efficiency of a business process or to improve customer experiences?
He went on to give an example of a firm that he claimed worked with Fractal Analytics in the past to explain this concept better:
About 18 months before getting into AI projects the client we were working with brought in a visionary leader who said im not supporting any initiative that cant show progress in 6 weeks.. He seemed to enforce this constraint even though he understood that there are a number of initiatives that are transformative long term engagements at enterprise level. This allowed the company to be more rapid defining areas to work and ruthless about what success and progress means and therefore establish a codified approach to measurement.
In a 12 month period they executed 30-40 different initiatives that they called Minimum Viable Proposition (MVPs). They identified 5-6 which had the potential to become transformative at enterprise level and this year they are taking these to deploy on an organizational scale.
According to Narayanan, the client gleaned the following three insights from this process:
See the rest here:
Unlocking the ROI of Artificial Intelligence Key Considerations for Business Leaders - Emerj
- What is Artificial Intelligence (AI)? - Definition from ... [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Association for the Advancement of Artificial Intelligence [Last Updated On: June 13th, 2016] [Originally Added On: June 13th, 2016]
- A.I. Artificial Intelligence - Wikipedia, the free ... [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Artificial Intelligence - The New York Times [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Intro to Artificial Intelligence Course and Training ... [Last Updated On: June 28th, 2016] [Originally Added On: June 28th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- What is Artificial Intelligence (AI)? Webopedia Definition [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- Intro to Artificial Intelligence Course and Training Online ... [Last Updated On: July 5th, 2016] [Originally Added On: July 5th, 2016]
- Artificial Intelligence News -- ScienceDaily [Last Updated On: September 16th, 2016] [Originally Added On: September 16th, 2016]
- Artificial intelligence positioned to be a game-changer - CBS ... [Last Updated On: October 13th, 2016] [Originally Added On: October 13th, 2016]
- Artificial Intelligence: A Modern Approach - amazon.com [Last Updated On: October 31st, 2016] [Originally Added On: October 31st, 2016]
- Artificial Intelligence - IndiaBIX [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- The Non-Technical Guide to Machine Learning & Artificial ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence - Graduate Schools of Science ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence in Medicine: An Introduction [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- What does artificial intelligence mean? - Definitions.net [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Lockheed Martin [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Course - Computer Science at CCSU [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- FREE Artificial Intelligence Essay - Example Essays [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Elon Musk's artificial intelligence group signs Microsoft ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Real FX - Slotless Racing with Artificial Intelligence [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence: What It Is and How It Really Works [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Market Size and Forecast by 2024 [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Algorithm-Driven Design: How Artificial Intelligence Is ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- 9 Development in Artificial Intelligence | Funding a ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Tops Humans in Poker Battle What's the Big Deal? - PokerNews.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Is AI a Threat to Christianity? - The Atlantic [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Allow mathematicians to pierce artificial intelligence frontiers - Livemint [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Montreal sees its future in smart sensors, artificial intelligence (with video) - Computerworld [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Silicon Valley Hedge Fund Takes On Wall Street With AI Trader - Bloomberg [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- The Observer view on artificial intelligence - The Guardian [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Artificial Intelligence Is Coming Whether You Like It Or Not - Mother Jones [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- RealDoll Creating Artificial Intelligence System, Robotic Sex Dolls ... - Breitbart News [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Forget lessons, these smart skis are loaded with artificial intelligence - Mashable [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence Correctly Predicted the Patriots' 34-28 Super ... - Digital Trends [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Why C-Levels Need To Think About eLearning And Artificial Intelligence - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence-Driven Robots: More Brains Than Brawn - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial intelligence: How to build the business case - ZDNet [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- What 'social artificial intelligence' means for marketers - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Actress Kristen Stewart's Research Paper On Artificial Intelligence: A Critical Evaluation - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Baidu cut its healthcare business to concentrate on artificial intelligence - Asia Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Google Android Wear 2.0 update puts artificial intelligence inside your wristwatch - The Sun [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- How criminals use Artificial Intelligence and Machine Learning - BetaNews [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- In the Labs: Connected vehicles in Ohio, artificial intelligence in Illinois and Massachusetts - Network World [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Keeping an eye on artificial intelligence - The National Business Review [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Actors, teachers, therapists think your job is safe from artificial intelligence? Think again - The Guardian [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Wells Fargo Innovation Group to Focus on Artificial Intelligence, Payments and APIs - Wall Street Journal (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- SAP aims to step up its artificial intelligence, machine learning game as S/4HANA hits public cloud - ZDNet [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial Intelligence Is Coming To Police Bodycams, Raising Privacy Concerns - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Nvidia Beats Earnings Estimates As Its Artificial Intelligence Business Keeps On Booming - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Could Artificial Intelligence Ever Become A Threat To Humanity? - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial intuition will supersede artificial intelligence, experts say - Network World [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- The Peril of Inaction with Artificial Intelligence - Gigaom [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- TASER International Bringing Artificial Intelligence to Law Enforcement - Motley Fool [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- LG G6 teasers emphasize battery life, artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Wells Fargo sets up artificial intelligence team in tech push - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford spending $1 billion on self-driving artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Artificial Intelligence in Business Process Automation - Nanalyze [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- An artificial intelligence gamble that paid off - Minneapolis Star Tribune [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Ford to Invest $1 Billion in Artificial Intelligence Start-Up - New York Times [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Wells Fargo Pushes Into Artificial Intelligence - Fortune [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Artificial intelligence predictions surpass reality - UT The Daily Texan [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Creating artificial intelligence-driven technology products is almost like unleashing the Frankenstein's monster - Economic Times (blog) [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Inside Intel Corporation's Artificial Intelligence Strategy - Motley Fool [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- The artificial intelligence revolutionising healthcare - Irish Times [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Announces Investment in Artificial Intelligence Company Argo AI - Motor Trend [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Invests $1-Billion in Artificial Intelligence - AutoGuide.com [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Salesforce adds some artificial intelligence to customer service products - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- No hype, just fact: Artificial intelligence in simple business terms - ZDNet [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence and The Confusion of Our Age - Patheos (blog) [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- How Artificial Intelligence Startups Struck Gold - Entrepreneur [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Terrifyingly, Google's Artificial Intelligence acts aggressive when cornered - Chron.com [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- This Startup Has Developed A New Artificial Intelligence That Can (Sometimes) Beat Google - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- RPI artificial intelligence expert looks at Westworld - Albany Times Union [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's DeepMind artificial intelligence becomes 'highly aggressive' when stressed. Skynet, anyone? - Mirror.co.uk [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Enters The Classroom - News One [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- John Pisarek Talks Artificial Intelligence - Customer Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Can Artificial Intelligence Predict Earthquakes? - Scientific American [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Is Becoming A Major Disruptive Force In Banks' Finance Departments - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]