How artificial intelligence learns to be racist – Vox – Vox

Posted: April 19, 2017 at 10:07 am

Open up the photo app on your phone and search dog, and all the pictures you have of dogs will come up. This was no easy feat. Your phone knows what a dog looks like.

This and other modern-day marvels are the result of machine learning. These are programs that comb through millions of pieces of data and start making correlations and predictions about the world. The appeal of these programs is immense: These machines can use cold, hard data to make decisions that are sometimes more accurate than a humans.

But know: Machine learning has a dark side. Many people think machines are not biased, Princeton computer scientist Aylin Caliskan says. But machines are trained on human data. And humans are biased.

Computers learn how to be racist, sexist, and prejudiced in a similar way that a child does, Caliskan explains: from their creators.

Nearly all new consumer technologies use machine learning in some way. Like Google Translate: No person instructed the software to learn how to translate Greek to French and then to English. It combed through countless reams of text and learned on its own. In other cases, machine learning programs make predictions about which rsums are likely to yield successful job candidates, or how a patient will respond to a particular drug.

Machine learning is a program that sifts through billions of data points to solve problems (such as can you identify the animal in the photo), but it doesnt always make clear how it has solved the problem. And its increasingly clear these programs can develop biases and stereotypes without us noticing.

Last May, ProPublica published an investigation on a machine learning program that courts use to predict who is likely to commit another crime after being booked systematically. The reporters found that the software rated black people at a higher risk than whites.

Scores like this known as risk assessments are increasingly common in courtrooms across the nation, ProPublica explained. They are used to inform decisions about who can be set free at every stage of the criminal justice system, from assigning bond amounts to even more fundamental decisions about defendants freedom.

The program learned about who is most likely to end up in jail from real-world incarceration data. And historically, the real-world criminal justice system has been unfair to black Americans.

This story reveals a deep irony about machine learning. The appeal of these systems is they can make impartial decisions, free of human bias. If computers could accurately predict which defendants were likely to commit new crimes, the criminal justice system could be fairer and more selective about who is incarcerated and for how long, ProPublica wrote.

But what happened was that machine learning programs perpetuated our biases on a large scale. So instead of a judge being prejudiced against African Americans, it was a robot.

Its stories like the ProPublica investigation that led Caliskan to research this problem. As a female computer scientist who was routinely the only woman in her graduate school classes, shes sensitive to this subject.

Caliskan has seen bias creep into machine learning in often subtle ways for instance, in Google Translate.

Turkish, one of her native languages, has no gender pronouns. But when she uses Google Translate on Turkish phrases, it always ends up as hes a doctor in a gendered language. The Turkish sentence didnt say whether the doctor was male or female. The computer just assumed if youre talking about a doctor, its a man.

Recently, Caliskan and colleagues published a paper in Science, that finds as a computer teaches itself English, it becomes prejudiced against black Americans and women.

Basically, they used a common machine learning program to crawl through the internet, look at 840 billion words, and teach itself the definitions of those words. The program accomplishes this by looking for how often certain words appear in the same sentence. Take the word bottle. The computer begins to understand what the word means by noticing it occurs more frequently alongside the word container, and also near words that connote liquids like water or milk.

This idea to teach robots English actually comes from cognitive science and its understanding of how children learn language. How frequently two words appear together is the first clue we get to deciphering their meaning.

Once the computer amassed its vocabulary, Caliskan ran it through a version of the implicit association test.

In humans, the IAT is meant to undercover subtle biases in the brain by seeing how long it takes people to associate words. A person might quickly connect the words male and engineer. But if a person lags on associating woman and engineer, its a demonstration that those two terms are not closely associated in the mind, implying bias. (There are some reliability issues with the IAT in humans, which you can read about here.)

Here, instead at looking at the lag time, Caliskan looked at how closely the computer thought two terms were related. She found that African-American names in the program were less associated with the word pleasant than white names. And female names were more associated with words relating to family than male names. (In a weird way, the IAT might be better suited for use on computer programs than for humans, because humans answer its questions inconsistently, while a computer will yield the same answer every single time.)

Like a child, a computer builds its vocabulary through how often terms appear together. On the internet, African-American names are more likely to be surrounded by words that connote unpleasantness. Thats not because African Americans are unpleasant. Its because people on the internet say awful things. And it leaves an impression on our young AI.

This is as much as a problem as you think.

Increasingly, Caliskan says, job recruiters are relying on machine learning programs to take a first pass at rsums. And if left unchecked, the programs can learn and act upon gender stereotypes in their decision-making.

Lets say a man is applying for a nurse position; he might be found less fit for that position if the machine is just making its own decisions, she says. And this might be the same for a women applying for a software developer or programmer position. Almost all of these programs are not open source, and were not able to see whats exactly going on. So we have a big responsibility about trying to uncover if they are being unfair or biased.

And that will be a challenge in the future. Already AI is making its way into the health care system, helping doctors find the right course of treatment for their patients. (Theres early research on whether it can help predict mental health crises.)

But health data, too, is filled with historical bias. Its long been known that women get surgery at lower rates than men. (One reason is that women, as primary caregivers, have fewer people to take care of them post-surgery.)

Might AI then recommend surgery at a lower rate for women? Its something to watch out for.

Inevitably, machine learning programs are going to encounter historical patterns that reflect racial or gender bias. And it can be hard to draw the line between what is bias and what is just a fact about the world.

Machine learning programs will pick up on the fact that most nurses throughout history have been women. Theyll realize most computer programmers are male. Were not suggesting you should remove this information, Caliskan says. It might actually break the software completely.

Caliskan thinks there need to be more safeguards. Humans using these programs need to constantly ask, Why am I getting these results? and check the output of these programs for bias. They need to think hard on whether the data they are combing is reflective of historical prejudices. Caliskan admits the best practices of how to combat bias in AI is still being worked out. It requires a long-term research agenda for computer scientists, ethicist, sociologists, and psychologists, she says.

But at the very least, the people who use these programs should be aware of these problems, and not take for granted that a computer can produce a less biased result than a human.

And overall, its important to remember: AI learns about how the world has been. It picks up on status quo trends. It doesnt know how the world ought to be. Thats up to humans to decide.

Original post:

How artificial intelligence learns to be racist - Vox - Vox

Related Posts