Artificial Intelligence/Machine Learning and the Future of National Security
AI is a once-in-a lifetime commercial and defense game changer
By Steve Blank
Hundreds of billions in public and private capital is being invested in AI and Machine Learning companies. The number of patents filed in 2021 is more than 30 times higher than in 2015 as companies and countries across the world have realized that AI and Machine Learning will be a major disruptor and potentially change the balance of military power.
Until recently, the hype exceeded reality. Today, however, advances in AI in several important areas (here, here, here, here and here) equal and even surpass human capabilities.
If you havent paid attention, nows the time.
AI and the DoD
The Department of Defense has thought that AI is such a foundational set of technologies that they started a dedicated organization -- the JAIC -- to enable and implement artificial intelligence across the Department. They provide the infrastructure, tools, and technical expertise for DoD users to successfully build and deploy their AI-accelerated projects.
Some specific defense-related AI applications are listed later in this document.
Were in the Middle of a Revolution
Imagine its 1950, and youre a visitor who traveled back in time from today. Your job is to explain the impact computers will have on business, defense and society to people who are using manual calculators and slide rules. You succeed in convincing one company and a government to adopt computers and learn to code much faster than their competitors /adversaries. And they figure out how they could digitally enable their business supply chain, customer interactions, etc. Think about the competitive edge theyd have by today in business or as a nation. Theyd steamroll everyone.
Thats where we are today with Artificial Intelligence and Machine Learning. These technologies will transform businesses and government agencies. Today, 100s of billions of dollars in private capital have been invested in 1,000s of AI startups. The U.S. Department of Defense has created a dedicated organization to ensure its deployment.
But What Is It?
Compared to the classic computing weve had for the last 75 years, AI has led to new types of applications, e.g. facial recognition; new types of algorithms, e.g. machine learning; new types of computer architectures, e.g. neural nets; new hardware, e.g. GPUs; new types of software developers, e.g. data scientists; all under the overarching theme of artificial intelligence. The sum of these feels like buzzword bingo. But they herald a sea change in what computers are capable of doing, how they do it, and what hardware and software is needed to do it.
This brief will attempt to describe all of it.
New Words to Define Old Things
One of the reasons the world of AI/ML is confusing is that its created its own language and vocabulary. It uses new words to define programming steps, job descriptions, development tools, etc. But once you understand how the new world maps onto the classic computing world, it starts to make sense. So first a short list of some key definitions.
AI/ML - a shorthand for Artificial Intelligence/Machine Learning
Artificial Intelligence (AI) - a catchall term used to describe Intelligent machines which can solve problems, make/suggest decisions and perform tasks that have traditionally required humans to do. AI is not a single thing, but a constellation of different technologies.
Machine Learning (ML) - a subfield of artificial intelligence. Humans combine data with algorithms (see here for a list) to train a model using that data. This trained model can then make predications on new data (is this picture a cat, a dog or a person?) or decision-making processes (like understanding text and images) without being explicitly programmed to do so.
Machine learning algorithms - computer programs that adjust themselves to perform better as they are exposed to more data.
The learning part of machine learning means these programs change how they process data over time. In other words, a machine-learning algorithm can adjust its own settings, given feedback on its previous performance in making predictions about a collection of data (images, text, etc.).
Deep Learning/Neural Nets a subfield of machine learning. Neural networks make up the backbone of deep learning. (The deep in deep learning refers to the depth of layers in a neural network.) Neural nets are effective at a variety of tasks (e.g., image classification, speech recognition). A deep learning neural net algorithm is given massive volumes of data, and a task to perform - such as classification. The resulting model is capable of solving complex tasks such as recognizing objects within an image and translating speech in real time. In reality, the neural net is a logical concept that gets mapped onto a physical set of specialized processors. See here.)
Data Science a new field of computer science. Broadly it encompasses data systems and processes aimed at maintaining data sets and deriving meaning out of them. In the context of AI, its the practice of people who are doing machine learning.
Data Scientists - responsible for extracting insights that help businesses make decisions. They explore and analyze data using machine learning platforms to create models about customers, processes, risks, or whatever theyre trying to predict.
Whats Different? Why is Machine Learning Possible Now?
To understand why AI/Machine Learning can do these things, lets compare them to computers before AI came on the scene. (Warning simplified examples below.)
Classic Computers
For the last 75 years computers (well call these classic computers) have both shrunk to pocket size (iPhones) and grown to the size of warehouses (cloud data centers), yet they all continued to operate essentially the same way.
Classic Computers - Programming
Classic computers are designed to do anything a human explicitly tells them to do. People (programmers) write software code (programming) to develop applications, thinking a priori about all the rules, logic and knowledge that need to be built in to an application so that it can deliver a specific result. These rules are explicitly coded into a program using a software language (Python, JavaScript, C#, Rust, ).
Classic Computers - Compiling
The code is then compiled using software to translate the programmers source code into a version that can be run on a target computer/browser/phone. For most of todays programs, the computer used to develop and compile the code does not have to be that much faster than the one that will run it.
Classic Computers - Running/Executing Programs
Once a program is coded and compiled, it can be deployed and run (executed) on a desktop computer, phone, in a browser window, a data center cluster, in special hardware, etc. Programs/applications can be games, social media, office applications, missile guidance systems, bitcoin mining, or even operating systems e.g. Linux, Windows, IOS. These programs run on the same type of classic computer architectures they were programmed in.
Classic Computers Software Updates, New Features
For programs written for classic computers, software developers receive bug reports, monitor for security breaches, and send out regular software updates that fix bugs, increase performance and at times add new features.
Classic Computers- Hardware
The CPUs (Central Processing Units) that write and run these Classic Computer applications all have the same basic design (architecture). The CPUs are designed to handle a wide range oftasks quickly in a serial fashion. These CPUs range from Intel X86 chips, and the ARM cores on Apple M1 SoC, to thez15 in IBM mainframes.
Machine Learning
In contrast to programming on classic computing with fixed rules, machine learning is just like it sounds we can train/teach a computer to learn by example by feeding it lots and lots of examples. (For images a rule of thumb is that a machine learning algorithm needs at least 5,000 labeled examples of each category in order to produce an AI model with decent performance.) Once it is trained, the computer runs on its own and can make predictions and/or complex decisions.
Just as traditional programming has three steps - first coding a program, next compiling it and then running it - machine learning also has three steps: training (teaching), pruning and inference (predicting by itself.)
Machine Learning - Training
Unlike programing classic computers with explicit rules, training is the process of teaching a computer to perform a task e.g. recognize faces, signals, understand text, etc. (Now you know why you're asked to click on images of traffic lights, cross walks, stop signs, and buses or type the text of scanned image in ReCaptcha.) Humans provide massive volumes of training data (the more data, the better the models performance) and select the appropriate algorithm to find the best optimized outcome.
(See the detailed machine learning pipeline later in this section for the gory details.)
By running an algorithm selected by a data scientist on a set of training data, the Machine Learning system generates the rules embedded in a trained model. The system learns from examples (training data), rather than being explicitly programmed. (See the Types of Machine Learning section for more detail.) This self-correction is pretty cool. An input to a neural net results in a guess about what that input is. The neural net then takes its guess and compares it to a ground-truth about the data, effectively asking an expert Did I get this right? The difference between the networks guess and the ground truth is itserror. The network measures that error, and walks the error back over its model, adjusting weights to the extent that they contributed to the error.)
Just to make the point again: The algorithms combined with the training data - not external human computer programmers - create the rules that the AI uses. The resulting model is capable of solving complex tasks such as recognizing objects its never seen before, translating text or speech, or controlling a drone swarm.
(Instead of building a model from scratch you can now buy, for common machine learning tasks, pretrained models from others and here, much like chip designers buying IP Cores.)
Machine Learning Training - Hardware
Training a machine learning model is a very computationally intensive task. AI hardware must be able to perform thousands of multiplications and additions in a mathematical process called matrix multiplication. It requires specialized chips to run fast. (See the AI hardware section for details.)
Machine Learning - Simplification via pruning, quantization, distillation
Just like classic computer code needs to be compiled and optimized before it is deployed on its target hardware, the machine learning models are simplified and modified(pruned) touse less computingpower, energy, and memory before theyre deployed to run on their hardware.
Read this article:
Artificial Intelligence/Machine Learning and the Future of National Security - smallwarsjournal
- What is Artificial Intelligence (AI)? - Definition from ... [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Association for the Advancement of Artificial Intelligence [Last Updated On: June 13th, 2016] [Originally Added On: June 13th, 2016]
- A.I. Artificial Intelligence - Wikipedia, the free ... [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Artificial Intelligence - The New York Times [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Intro to Artificial Intelligence Course and Training ... [Last Updated On: June 28th, 2016] [Originally Added On: June 28th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- What is Artificial Intelligence (AI)? Webopedia Definition [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- Intro to Artificial Intelligence Course and Training Online ... [Last Updated On: July 5th, 2016] [Originally Added On: July 5th, 2016]
- Artificial Intelligence News -- ScienceDaily [Last Updated On: September 16th, 2016] [Originally Added On: September 16th, 2016]
- Artificial intelligence positioned to be a game-changer - CBS ... [Last Updated On: October 13th, 2016] [Originally Added On: October 13th, 2016]
- Artificial Intelligence: A Modern Approach - amazon.com [Last Updated On: October 31st, 2016] [Originally Added On: October 31st, 2016]
- Artificial Intelligence - IndiaBIX [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- The Non-Technical Guide to Machine Learning & Artificial ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence - Graduate Schools of Science ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence in Medicine: An Introduction [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- What does artificial intelligence mean? - Definitions.net [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Lockheed Martin [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Course - Computer Science at CCSU [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- FREE Artificial Intelligence Essay - Example Essays [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Elon Musk's artificial intelligence group signs Microsoft ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Real FX - Slotless Racing with Artificial Intelligence [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence: What It Is and How It Really Works [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Market Size and Forecast by 2024 [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Algorithm-Driven Design: How Artificial Intelligence Is ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- 9 Development in Artificial Intelligence | Funding a ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Tops Humans in Poker Battle What's the Big Deal? - PokerNews.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Is AI a Threat to Christianity? - The Atlantic [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Allow mathematicians to pierce artificial intelligence frontiers - Livemint [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Montreal sees its future in smart sensors, artificial intelligence (with video) - Computerworld [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Silicon Valley Hedge Fund Takes On Wall Street With AI Trader - Bloomberg [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- The Observer view on artificial intelligence - The Guardian [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Artificial Intelligence Is Coming Whether You Like It Or Not - Mother Jones [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- RealDoll Creating Artificial Intelligence System, Robotic Sex Dolls ... - Breitbart News [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Forget lessons, these smart skis are loaded with artificial intelligence - Mashable [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence Correctly Predicted the Patriots' 34-28 Super ... - Digital Trends [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Why C-Levels Need To Think About eLearning And Artificial Intelligence - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence-Driven Robots: More Brains Than Brawn - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial intelligence: How to build the business case - ZDNet [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- What 'social artificial intelligence' means for marketers - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Actress Kristen Stewart's Research Paper On Artificial Intelligence: A Critical Evaluation - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Baidu cut its healthcare business to concentrate on artificial intelligence - Asia Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Google Android Wear 2.0 update puts artificial intelligence inside your wristwatch - The Sun [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- How criminals use Artificial Intelligence and Machine Learning - BetaNews [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- In the Labs: Connected vehicles in Ohio, artificial intelligence in Illinois and Massachusetts - Network World [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Keeping an eye on artificial intelligence - The National Business Review [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Actors, teachers, therapists think your job is safe from artificial intelligence? Think again - The Guardian [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Wells Fargo Innovation Group to Focus on Artificial Intelligence, Payments and APIs - Wall Street Journal (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- SAP aims to step up its artificial intelligence, machine learning game as S/4HANA hits public cloud - ZDNet [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial Intelligence Is Coming To Police Bodycams, Raising Privacy Concerns - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Nvidia Beats Earnings Estimates As Its Artificial Intelligence Business Keeps On Booming - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Could Artificial Intelligence Ever Become A Threat To Humanity? - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial intuition will supersede artificial intelligence, experts say - Network World [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- The Peril of Inaction with Artificial Intelligence - Gigaom [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- TASER International Bringing Artificial Intelligence to Law Enforcement - Motley Fool [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- LG G6 teasers emphasize battery life, artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Wells Fargo sets up artificial intelligence team in tech push - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford spending $1 billion on self-driving artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Artificial Intelligence in Business Process Automation - Nanalyze [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- An artificial intelligence gamble that paid off - Minneapolis Star Tribune [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Ford to Invest $1 Billion in Artificial Intelligence Start-Up - New York Times [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Wells Fargo Pushes Into Artificial Intelligence - Fortune [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Artificial intelligence predictions surpass reality - UT The Daily Texan [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Creating artificial intelligence-driven technology products is almost like unleashing the Frankenstein's monster - Economic Times (blog) [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Inside Intel Corporation's Artificial Intelligence Strategy - Motley Fool [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- The artificial intelligence revolutionising healthcare - Irish Times [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Announces Investment in Artificial Intelligence Company Argo AI - Motor Trend [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Invests $1-Billion in Artificial Intelligence - AutoGuide.com [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Salesforce adds some artificial intelligence to customer service products - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- No hype, just fact: Artificial intelligence in simple business terms - ZDNet [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence and The Confusion of Our Age - Patheos (blog) [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- How Artificial Intelligence Startups Struck Gold - Entrepreneur [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Terrifyingly, Google's Artificial Intelligence acts aggressive when cornered - Chron.com [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- This Startup Has Developed A New Artificial Intelligence That Can (Sometimes) Beat Google - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- RPI artificial intelligence expert looks at Westworld - Albany Times Union [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's DeepMind artificial intelligence becomes 'highly aggressive' when stressed. Skynet, anyone? - Mirror.co.uk [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Enters The Classroom - News One [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- John Pisarek Talks Artificial Intelligence - Customer Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Can Artificial Intelligence Predict Earthquakes? - Scientific American [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Is Becoming A Major Disruptive Force In Banks' Finance Departments - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]