Supercomputing has come a long way since its beginnings in the 1960s. Initially, many supercomputers were based on mainframes, however, their cost and complexity were significant barriers to entry for many institutions. The idea of utilizing multiple low-cost PCs over a network to provide a cost-effective form of parallel computing led research institutions along the path of high-performance computing (HPC) clusters starting with "Beowulf clusters in the 90s.
Beowulf clusters are very much the predecessors to todays HPC clusters. The fundamentals of the Beowulf architecture are still relevant to modern-day HPC deployments; however, multiple desktop PCs have been replaced with purpose-built, high-density server platforms. Networking has significantly improved, with High Bandwidth/Low Latency InfiniBand (or, as a nod to the past, increasingly Ethernet) and high-performance parallel filesystems such as SpectrumScale, Lustre and BeeGFS have been developed to allow the storage to keep up with the compute. The development of excellent, often open-source, tools for managing high-performance distributed computing has also made adoption a lot easier.
More recently, we have witnessed the advancement of HPC from the original, CPU-based clusters to systems that do the bulk of their processing on Graphic Processing Units (GPUs), resulting in the growth of GPU accelerated computing.
While HPC was scaling up with more compute resource, the data was growing at a far faster pace. Since the outset of 2010, there has been a huge explosion in unstructured data from sources like webchats, cameras, sensors, video communications and so on. This has presented big data challenges for storage, processing, and transfer. Newer technology paradigms such as big data, parallel computing, cloud computing, Internet of Things (IoT) and artificial intelligence (AI) came into the mainstream to cope with the problems caused by the data onslaught.
What these paradigms all have in common is that they are capable of being parallelized to a high degree. HPCs GPU parallel computing has been a real game-changer for AI as parallel computing can process all this data, in a short amount of time using GPUs. As workloads have grown, so too have GPU parallel computing and AI machine learning. Image analysis is a good example of how the power of GPU computing can support an AI project. With one GPU it would take 72 hours to process an imaging deep learning model, but it only takes 20 minutes to run the same AI model on an HPC cluster with 64 GPUs.
Beowulf is still relevant to AI workloads. Storage, networking, and processing are important to make AI projects work at scale, this is when AI can make use of the large-scale, parallel environments that HPC infrastructure (with GPUs) provides to help process workloads quickly. Training an AI model takes more far more time than testing one. The importance of coupling AI with HPC is that it significantly speeds up the training stage and boosts the accuracy and reliability of AI models, whilst keeping the training time to a minimum.
The right software is needed to support the HPC and AI combination. There are traditional products and applications that are being used to run AI workloads from within HPC environments, as many share the same requirements for aggregating large pools of resources and managing them. However, everything from the underlying hardware, the schedulers used, Message Passing Interface (MPI) and even to how software is packaged up is beginning to change towards more flexible models, and a rize in hybrid environments is a trend that we expect to see continue.
As traditional use cases for HPC applications are so well established, changes often happen relatively slowly. However, the updates for many HPC applications are only necessary every 6 to 12 months. On the other hand, AI development is happening so fast, updates and new applications, tools and libraries are being released roughly daily.
If you employed the same update strategies to manage your AI as you do for your HPC platforms, you would get left behind. That is why a solution like NVIDIAs DGX containerized platform allows you to quickly and easily keep up to date with rapid developments from NVIDIA GPU CLOUD (NGC), an online database of AI and HPC tools encapsulated in easy to consume containers.
It is becoming standard practice within the HPC community to use a containerized platform for managing instances that are beneficial for AI deployment. Containerization has accelerated support for AI workloads on HPC clusters.
AI models can be used to predict the outcome of a simulation without having to run the full, resource-intensive, simulation. By using an AI model in this way input variables/design points of interest can be narrowed down to a candidate list quickly and at much lower cost. These candidate variables can be run through the known simulation to verify the AI models prediction.
Quantum Molecular Simulations (QMS), Chip Design and Drug Discovery are areas this technique is increasingly being applied, IBM also recently launched a product that does exactly this known as IBM Bayesian Optimization Accelerator (BOA).
Start with a few simple questions; How big is my problem? How fast do I want my results back? How much data do I have to process? How many users are sharing the resource?
HPC techniques will help the management of an AI project if the existing dataset is substantial, or if contention issues are being experienced on the infrastructure from having multiple users. If you are at a point where you need to put four GPUs in a workstation and this is becoming a problem by causing a bottleneck, you need to consult with an HPC integrator, with experience in scaling up infrastructure for these types of workloads.
Some organizations might be running AI workloads on a large machine or multiple machines with GPUs and your AI infrastructure might look more like HPC infrastructure than you realize. There are HPC techniques, software and other aspects that can really help to manage that infrastructure. The infrastructure looks quite similar, but there are some clever ways of installing and managing it specifically geared towards AI modeling.
Storage is very often overlooked when organizations are building infrastructure for AI workloads, and you may not be getting the full ROI on your AI infrastructure if your compute is waiting for your storage to be freed up. It is important to seek the best advice for sizing and deploying the right storage solution for your cluster.
Big data doesnt necessarily need to be that big, it is just when it reaches that point when it becomes unmanageable for an organization. When you cant get out of it what you want, then it becomes too big for you. HPC can provide the compute power to deal with the large amounts of data in AI workloads.
It is an exciting time for both HPC and AI, as we are seeing incremental adaptation by both technologies. The challenges are getting bigger every day, with newer and more distinct problems which need faster solutions. For example, countering cyber-attacks, discovering new vaccines, detecting enemy missiles and so on.
It will be interesting to see what happens next in terms of inclusion of 100% containerized environments onto HPC clusters, and technologies such as Singularity and Kubernetes environments.
Schedulers today initiate jobs and wait until they finish which may not be an ideal scenario for AI environments. More recently, newer schedulers monitor the real-time performance and execute jobs based on priority and runtime and will be able to work alongside containerization technologies and environments such as Kubernetes to orchestrate the resource needed.
Storage will become increasingly important to support large deployments, as vast volumes of data need to be stored, classified, labeled, cleansed, and moved around quickly. Infrastructure such as flash storage and networking become vital to your project, alongside storage software that can scale with demand.
Both HPC and AI will continue to have an impact on both organizations and each other and their symbiotic relationship will only grow stronger as both traditional HPC users and AI infrastructure modelers realize the full potential of each other.
Vibin Vijay, AI Product Specialist, OCF
Read more:
Solving the data conundrum with HPC and AI - ITProPortal
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]