Can you imagine a just and equitable world where everyone, regardless of age, gender or class, has access to excellent healthcare, nutritious food and other basic human needs? Are data-driven technologies such as artificial intelligence and data science capable of achieving this or will the bias that already drives real-world outcomes eventually overtake the digital world, too?
Bias represents injustice against a person or a group. A lot of existing human bias can be transferred to machines because technologies are not neutral; they are only as good, or bad, as the people who develop them. To explain how bias can lead to prejudices, injustices and inequality in corporate organizations around the world, I will highlight two real-world examples where bias in artificial intelligence was identified and the ethical risk mitigated.
In 2014, a team of software engineers at Amazon were building a program to review the resumes of job applicants. Unfortunately, in 2015 they realized that the system discriminated against women for technical roles. Amazon recruiters did not use the software to evaluate candidates because of these discrimination and fairness issues. Meanwhile in 2019, San Francisco legislators voted against the use of facial recognition, believing they were prone to errors when used on people with dark skin or women.
The National Institute of Standards and Technology (NIST) conducted research that evaluated facial-recognition algorithms from around 100 developers from 189 organizations, including Toshiba, Intel and Microsoft. Speaking about the alarming conclusions, one of the authors, Patrick Grother, says: "While it is usually incorrect to make statements across algorithms, we found empirical evidence for the existence of demographic differentials in the majority of the algorithms we studied.
Ridding AI and machine learning of bias involves taking their many uses into consideration
Image: British Medical Journal
To list some of the source of fairness and non-discrimination risks in the use of artificial intelligence, these include: implicit bias, sampling bias, temporal bias, over-fitting to training data, and edge cases and outliers.
Implicit bias is discrimination or prejudice against a person or group that is unconscious to the person with the bias. It is dangerous because the person is unaware of the bias whether it be on grounds of gender, race, disability, sexuality or class.
This is a statistical problem where random data selected from the population do not reflect the distribution of the population. The sample data may be skewed towards some subset of the group.
This is based on our perception of time. We can build a machine-learning model that works well at this time, but fails in the future because we didn't factor in possible future changes when building the model.
This happens when the AI model can accurately predict values from the training dataset but cannot predict new data accurately. The model adheres too much to the training dataset and does not generalize to a larger population.
These are data outside the boundaries of the training dataset. Outliers are data points outside the normal distribution of the data. Errors and noise are classified as edge cases: Errors are missing or incorrect values in the dataset; noise is data that negatively impacts on the machine learning process.
Analytical techniques require meticulous assessment of the training data for sampling bias and unequal representations of groups in the training data. You can investigate the source and characteristics of the dataset. Check the data for balance. For instance, is one gender or race represented more than the other? Is the size of the data large enough for training? Are some groups ignored?
A recent study on mortgage loans revealed that the predictive models used for granting or rejecting loans are not accurate for minorities. Scott Nelson, a researcher at the University of Chicago, and Laura Blattner, a Stanford University economist, found out that the reason for the variance between mortgage approval for majority and minority group is because low-income and minority groups have less data documented in their credit histories. Without strong analytical study of the data, the cause of the bias will be undetected and unknown.
What if the environment you trained the data is not suitable for a wider population? Expose your model to varying environments and contexts for new insights. You want to be sure that your model can generalize to a wider set of scenarios.
A review of a healthcare-based risk prediction algorithm that was used on about 200 million American citizens showed racial bias. The algorithm predicts patients that should be given extra medical care. It was found out that the system favoured white patients over black patients. The problem with the algorithms development is that it wasn't properly tested with all major races before deployment.
Inclusive design emphasizes inclusion in the design process. The AI product should be designed with consideration for diverse groups such as gender, race, class, and culture. Foreseeability is about predicting the impact the AI system will have right now and over time.
Recent research published by the Journal of the American Medical Association (JAMA) reviewed more than 70 academic publications based on the diagnostic prowess of doctors against digital doppelgangers across several areas of clinical medicine. A lot of the data used in training the algorithms came from only three states: Massachusetts, California and New York. Will the algorithm generalize well to a wider population?
A lot of researchers are worried about algorithms for skin-cancer detection. Most of them do not perform well in detecting skin cancer for darker skin because they were trained primarily on light-skinned individuals. The developers of the skin-cancer detection model didn't apply principles of inclusive design in the development of their models.
Testing is an important part of building a new product or service. User testing in this case refers to getting representatives from the diverse groups that will be using your AI product to test it before it is released.
This is a method of performing strategic analysis of external environments. It is an acronym for social (i.e. societal attitudes, culture and demographics), technological, economic (ie interest, growth and inflation rate), environmental, political and values. Performing a STEEPV analysis will help you detect fairness and non-discrimination risks in practice.
The COVID-19 pandemic and recent social and political unrest have created a profound sense of urgency for companies to actively work to tackle inequity.
The Forum's work on Diversity, Equality, Inclusion and Social Justice is driven by the New Economy and Society Platform, which is focused on building prosperous, inclusive and just economies and societies. In addition to its work on economic growth, revival and transformation, work, wages and job creation, and education, skills and learning, the Platform takes an integrated and holistic approach to diversity, equity, inclusion and social justice, and aims to tackle exclusion, bias and discrimination related to race, gender, ability, sexual orientation and all other forms of human diversity.
The Platform produces data, standards and insights, such as the Global Gender Gap Report and the Diversity, Equity and Inclusion 4.0 Toolkit, and drives or supports action initiatives, such as Partnering for Racial Justice in Business, The Valuable 500 Closing the Disability Inclusion Gap, Hardwiring Gender Parity in the Future of Work, Closing the Gender Gap Country Accelerators, the Partnership for Global LGBTI Equality, the Community of Chief Diversity and Inclusion Officers and the Global Future Council on Equity and Social Justice.
It is very easy for the existing bias in our society to be transferred to algorithms. We see discrimination against race and gender easily perpetrated in machine learning. There is an urgent need for corporate organizations to be more proactive in ensuring fairness and non-discrimination as they leverage AI to improve productivity and performance. One possible solution is by having an AI ethicist in your development team to detect and mitigate ethical risks early in your project before investing lots of time and money.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Go here to read the rest:
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]