During the Intel AI Summit earlier this month where the company demonstrated its initial processors for artificial intelligence training and inference workloads, Naveen Rao, corporate vice president and general manager of the Artificial Intelligence Products Group at Intel, spoke about the rapid pace of evolution in the AI space that also includes machine learning and deep learning. The Next Platform did an in-depth look at the technical details Rao shared about the products. But as noted in the story, Rao explained that the complexity of neural network models when talking about the number of parameters is growing ten-fold every year, a rate that is unlike any other technology trend we have ever seen.
For Intel and the myriad other tech vendors getting making inroads into the space, AI and components like machine learning and deep learning already is a big business and promises to get bigger. Intels AI products are expected to generate more than $3.5 billion in revenue for the chip maker this year, according to Rao. But one of tricks to continuing the momentum is being able to keep pace with the fast-rising demand for innovations.
In a recent interview with The Next Platform before the AI Summit, two of the key executives overseeing the development of the companys first-generation Neural Network Processors NNP-T for training and NNP-I for inference echoed Raos comments when talking about the speed of evolution in the AI space. The market is taking a turn, with more enterprises beginning to embrace the technologies and incorporate them into their business plans, and Intel is aiming to meet accelerating demand not only with its NNPs but also through its Xeon server chips and its low-power Movidius processors, which can help bring AI and deep learning capabilities out to the fast-growing edge.
Gadi Singer and Carey Kloss, vice presidents and general managers of AI architectures for inference and training, respectively, also talked about the challenges the industry faces at a time when model sizes continue to grow and organizations are starting rolling out proof-of-concepts (POCs) with an eye toward wider deployments. The landscape has changed even since Intel bought startup Nervana Systems three years ago to challenge Nvidia and its GPU accelerators in the AI and deep learning space.
What we see happening in the transition to now and toward 2020 is what I call the coming of age of deep learning, says Singer, pictured below with an NNP-I chip, tells The Next Platform. This is where the capabilities have been better understood, where many companies are starting to understand how this might be applicable to their particular line of business. Theres a whole new generation of data scientists and other professionals who understand the field, theres an environment for developing new algorithms and new topologies for the deep learning frameworks. All those frameworks like TensorFlow and MXNet were not really in existence in 2015. It was all hand-tooled and so on. Now there are environments, there is a large cadre of people who are trained on that, theres a better understanding of the mapping, theres a better understanding of the data because it all depends on who is using the data and how to use the data.
<
The last five years were spent digesting what the new technology can do and building the foundation for using it. Now theres a lot of experimentation and deployment merging, he says. Hyperscale cloud services providers (CSPs) like Google, Facebook, Amazon and others already are using deep learning and AI and now enterprises are getting into the game. Intel sees an opportunity in 2020 and 2021 to create the capabilities and infrastructure to scale the technologies.
Now that it has gotten to the stage where companies understand how they can use it for their line of business, its going to be about total cost of ownership, ease of use, how to integrate purpose-built acceleration together with more general applications, Singer says. In most of those cases, companies have deep expertise in their domain and theyre bringing in deep learning capabilities. Its not really AI applications as it is AI-enriched applications that are doing whatever it was those companies were doing before but doing it in an AI-enriched way. What Intel is doing, both from the hardware side and the software side, is creating this foundation for scale.
That includes not on the AI, Xeon and Movidius products, but also such technologies as Optane DC persistent memory, 3D XPoint non-volatile memory and software, all of which work together and can help drive deep learning into a broader swath of the industry, Kloss says.
Its still the early days, he says. The big CSPs have deployed deep learning at scale. The rest of the industry is catching up. Were at the knee of the curve. Over next three years, every company will start deploying deep learning however it serves their purpose. But theyre not there just yet, so what were trying to do is to make sure they have the options available and we can help them deploy deep learning in their businesses. More importantly, we offer a broad range of products because as youre first entering deep learning, you might do some amount of proof-of-concept work. You dont need a datacenter filled with NNP-Ts for that. You can just use Xeons, or maybe use some NNP-Ts in the cloud. Once you really get your data sorted out and you figure out your models, then maybe you deploy a bunch of NNP-Ts in order to train your models at lower power and lower cost because its part of your datacenter.
It will be a similar approach when deploying inference, Kloss says. That means initially relying on Xeons, and once it becomes an important part of the businesses and enterprises look to save money and scale their capabilities, they can add NNP-I chips into the mix.
Balance, Scale And Challenges
Intel took a a clean-sheet approach to designing the NNPs and balance and scale were key factors, he says. That includes balancing bandwidth on and off the die with memory bandwidth and the right amount of static RAM (SRAM). Getting that balance right can mean 1.5 to two times better performance.
For scaling, training runs no longer happen on a single GPU. At minimum, training now runs on a chassis with at least eight GPUs and even after the NNP-T chip was in the Intel labs for only a few months, the company was already running eight- and 16-node scaling runs. Intel also incorporated a feature to help future-proof the chip, enabling it to move straight from the compute on one die to the compute on another die with low latency and high bandwidth, Kloss says.
Such capabilities are going to be critical in the rapidly evolving field, he says. When Nervana launched 2014, single-chip performance was important and the focus was on single-digit teraflops on a die. Now there are hundreds of teraflops on the die and even that isnt enough, according to Kloss. Full chasses are needed to keep up.
Just five years ago, you were training a neural [network] on single-digit teraflops on a single card and the space has moved so fast that now there are experiments where people are putting a thousand cards together to see how fast they can train something and it still takes an hour to train, Kloss says. Its been an exponential growth. In general, its going to get harder. Its going to be harder to continue scaling at this kind of pace.
Looking forward, there are going to be some key challenges Intel and the rest of the industry will have to address as parameter size increases and enterprise adoption expands, according to Kloss. At the same time, the trend will be toward continuous learning, Singer says, rather than separate inference and training. One of the challenges is size of the die, an area that the Open Compute Projects OAM (OCP Accelerator Module) specification will help address, Kloss says. There also are the issues with growing limitations with SerDes (Serializer/Desirializer) connectivity devices and power consumption.
You can only fit a die in there thats a particular size, he says. Its hard to go more than a 70x70mm package which is enormous, by the way. The things the size of a coaster. You cant just keep adding die area to this thing. The power budgets are going up; were seeing higher power budgets coming down the pike, so instead of adding die area people will start adding power to the chasses. But fitting high-powered parts into the current racks is a problem.
Regarding high-speed SerDes, it basically fills the edges of the die, but you cant go more than two deep or so on SerDes unless its a dedicated switch chip. [SerDes] links everything PCI-Express is made up of SERDES, 100 Gb/sec Ethernet is made up of SERDES. Each lane can only go so fast, and were starting to hit the limits of what how fast you can go over a reasonable link. So over the next couple of years were going to start hitting limits in terms of what the SERDES can do on the cards and how fast they can go. Were going to hit limits on how big a chip we can create, even if we could technologically go further. And then were going to hit power limits in terms of chassis power, rack power.
The next designs will have to take all of this into account, Kloss says, adding that the industry is going to hit these kinds of limitations, [so] it is going to be more and more important for total cost of ownership and for performance-per-chip to optimize for power.
At the same time, such efficiency is going to have to come in future-proofed products that can address workloads now and those coming down the line, Singer says. That is where Intels broad base of capabilities not only with the NNPs but also with its Xeon CPUs, Movidius chips, software and other technologies will become important.
By us creating a broader base and looking at the way to create the right engines but connect them in a way that can support multiple usages, were also creating headroom for usages that have not been invented yet but by 2021 might be the most common usages around, he says. Thats the pace of this industry.
The rest is here:
Keeping Pace In A Fast-Moving AI Space - The Next Platform
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]