The evolution from research to product
Its one thing for a Microsoft researcher to use all the available bells and whistles, plus Azures powerful computing infrastructure, to develop an AI-based machine translation model that can perform as well as a person on a narrow research benchmark with lots of data. Its quite another to make that model work in a commercial product.
To tackle the human parity challenge, three research teams used deep neural networks and applied other cutting-edge training techniques that mimic the way people might approach a problem to provide more fluent and accurate translations. Those included translating sentences back and forth between English and Chinese and comparing results, as well as repeating the same translation over and over until its quality improves.
In the beginning, we were not taking into account whether this technology was shippable as a product. We were just asking ourselves if we took everything in the kitchen sink and threw it at the problem, how good could it get? Menezes said. So we came up with this research system that was very big, very slow and very expensive just to push the limits of achieving human parity.
Since then, our goal has been to figure out how we can bring this level of quality or as close to this level of quality as possible into our production API, Menezes said.
Someone using Microsoft Translator types in a sentence and expects a translation in milliseconds, Menezes said. So the team needed to figure out how to make its big, complicated research model much leaner and faster. But as they were working to shrink the research system algorithmically, they also had to broaden its reach exponentially not just training it on news articles but on anything from handbooks and recipes to encyclopedia entries.
To accomplish this, the team employed a technique called knowledge distillation, which involves creating a lightweight student model that learns from translations generated by the teacher model with all the bells and whistles, rather than the massive amounts of raw parallel data that machine translation systems are generally trained on. The goal is to engineer the student model to be much faster and less complex than its teacher, while still retaining most of the quality.
In one example, the team found that the student model could use a simplified decoding algorithm to select the best translated word at each step, rather than the usual method of searching through a huge space of possible translations.
The researchers also developed a different approach to dual learning, which takes advantage of round trip translation checks. For example, if a person learning Japanese wants to check and see if a letter she wrote to an overseas friend is accurate, she might run the letter back through an English translator to see if it makes sense. Machine learning algorithms can also learn from this approach.
In the research model, the team used dual learning to improve the models output. In the production model, the team used dual learning to clean the data that the student learned from, essentially throwing out sentence pairs that represented inaccurate or confusing translations, Menezes said. That preserved a lot of the techniques benefit without requiring as much computing.
With lots of trial and error and engineering, the team developed a recipe that allowed the machine translation student model which is simple enough to operate in a cloud API to deliver real-time results that are nearly as accurate as the more complex teacher, Menezes said.
In the rapidly evolving AI landscape, where new language understanding models are constantly introduced and improved upon by others in the research community, Bings search experts are always on the hunt for new and promising techniques. Unlike the old days, in which people might type in a keyword and click through a list of links to get to the information theyre looking for, users today increasingly search by asking a question How much would the Mona Lisa cost? or Which spider bites are dangerous? and expect the answer to bubble up to the top.
This is really about giving the customers the right information and saving them time, said Rangan Majumder, partner group program manager of search and AI in Bing. We are expected to do the work on their behalf by picking the most authoritative websites and extracting the parts of the website that actually shows the answer to their question.
To do this, not only does an AI model have to pick the most trustworthy documents, but it also has to develop an understanding of the content within each document, which requires proficiency in any number of language understanding tasks.
Last June, Microsoft researchers were the first to develop a machine learning model that surpassed the estimate for human performance on the General Language Understanding Evaluation (GLUE) benchmark, which measures mastery of nine different language understanding tasks ranging from sentiment analysis to text similarity and question answering. Their Multi-Task Deep Neural Network (MT-DNN) solution employed both knowledge distillation and multi-task learning, which allows the same model to train on and learn from multiple tasks at once and to apply knowledge gained in one area to others.
Bings experts this fall incorporated core principles from that research into their own machine learning model, which they estimate has improved answers in up to 26 percent of all questions sent to Bing in English markets. It also improved caption generation or the links and descriptions lower down on the page in 20 percent of those queries. Multi-task deep learning led to some of the largest improvements in Bing question answering and captions, which have traditionally been done independently, by using a single model to perform both.
For instance, the new model can answer the question How much does the Mona Lisa cost? with a bolded numerical estimate: $830 million. In the answer below, it first has to know that the word cost is looking for a number, but it also has to understand the context within the answer to pick todays estimate over the older value of $100 million in 1962. Through multi-task training, the Bing team built a single model that selects the best answer, whether it should trigger and which exact words to bold.
Earlier this year, Bing engineers open sourced their code to pretrain large language representations on Azure. Building on that same code, Bing engineers working on Project Turing developed their own neural language representation, a general language understanding model that is pretrained to understand key principles of language and is reusable for other downstream tasks. It masters these by learning how to fill in the blanks when words are removed from sentences, similar to the popular childrens game Mad Libs.
You take a Wikipedia document, remove a phrase and the model has to learn to predict what phrase should go in the gap only by the words around it, Majumder said. And by doing that its learning about syntax, semantics and sometimes even knowledge. This approach blows other things out of the water because when you fine tune it for a specific task, its already learned a lot of the basic nuances about language.
To teach the pretrained model how to tackle question answering and caption generation, the Bing team applied the multi-task learning approach developed by Microsoft Research to fine tune the model on multiple tasks at once. When a model learns something useful from one task, it can apply those learnings to the other areas, said Jianfeng Gao, partner research manager in the Deep Learning Group at Microsoft Research.
For example, he said, when a person learns to ride a bike, she has to master balance, which is also a useful skill in skiing. Relying on those lessons from bicycling can make it easier and faster to learn how to ski, as compared with someone who hasnt had that experience, he said.
In some sense, were borrowing from the way human beings work. As you accumulate more and more experience in life, when you face a new task you can draw from all the information youve learned in other situations and apply them, Gao said.
Like the Microsoft Translator team, the Bing team also used knowledge distillation to convert their large and complex model into a leaner model that is fast and cost-effective enough to work in a commercial product.
And now, that same AI model working in Microsoft Search in Bing is being used to improve question answering when people search for information within their own company. If an employee types a question like Can I bring a dog to work? into the companys intranet, the new model can recognize that a dog is a pet and pull up the companys pet policy for that employee even if the word dog never appears in that text. And it can surface a direct answer to the question.
Just like we can get answers for Bing searches from the public web, we can use that same model to understand a question you might have sitting at your desk at work and read through your enterprise documents and give you the answer, Majumder said.
Top image: Microsoft investments in natural language understanding research are improving the way Bing answers search questions like How much does the Mona Lisa cost? Image by Muse du Louvre/Wikimedia Commons.
Related:
Jennifer Langston writes about Microsoft research and innovation. Follow her on Twitter.
Read the original:
From search to translation, AI research is improving Microsoft products - Microsoft
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]