The Applied Machine Learning group helps Facebook see, talk, and understand. It may even root out fakenews. Joaquin Candela, Director of Engineering for Applied Machine Learning at Facebook.
When asked to head Facebooks Applied Machine Learning groupto supercharge the worlds biggest social network with an AI makeoverJoaquin Quionero Candela hesitated.
It was not that the Spanish-born scientist, a self-described machine learning (ML) person, hadnt already witnessed how AI could help Facebook. Since joining the company in 2012, he had overseen a transformation of the companys ad operation, using an ML approach to make sponsored posts more relevant and effective. Significantly, he did this in a way that empowered engineers in his group to use AI even if they werent trained to do so, making the ad division richer overall in machine learning skills. But he wasnt sure the same magic would take hold in the larger arena of Facebook, where billions of people-to-people connections depend on fuzzier values than the hard data that measures ads. I wanted to be convinced that there was going to be value in it, he says of the promotion.
Despite his doubts, Candela took the post. And now, after barely two years, his hesitation seems almost absurd.
How absurd? Last month, Candela addressed an audience of engineers at a New York City conference. Im going to make a strong statement, he warned them. Facebook today cannot exist without AI. Every time you use Facebook or Instagram or Messenger, you may not realize it, but your experiences are being powered by AI.
Last November I went to Facebooks mammoth headquarters in Menlo Park to interview Candela and some of his team, so that I could see how AI suddenly became Facebooks oxygen. To date, much of the attention around Facebooks presence in the field has been focused on its world-class Facebook Artificial Intelligence Research group (FAIR), led by renowned neural net expert Yann LeCun. FAIR, along with competitors at Google, Microsoft, Baidu, Amazon, and Apple (now that the secretive company is allowing its scientists to publish), is one of the preferred destinations for coveted grads of elite AI programs. Its one of the top producers of breakthroughs in the brain-inspired digital neural networks behind recent improvements in the way computers see, hear, and even converse. But Candelas Applied Machine Learning group (AML) is charged with integrating the research of FAIR and other outposts into Facebooks actual productsand, perhaps more importantly, empowering all of the companys engineers to integrate machine learning into their work.
Because Facebook cant exist without AI, it needs all its engineers to build with it.
My visit occurs two days after the presidential election and one day after CEO Mark Zuckerberg blithely remarked that its crazy to think that Facebooks circulation of fake news helped elect Donald Trump. The comment would turn out be the equivalent of driving a fuel tanker into a growing fire of outrage over Facebooks alleged complicity in the orgy of misinformation that plagued its News Feed in the last year. Though much of the controversy is beyond Candelas pay grade, he knows that ultimately Facebooks response to the fake news crisis will rely on machine learning efforts in which his own team will have a part.
But to the relief of the PR person sitting in on our interview, Candela wants to show me something elsea demo that embodies the work of his group. To my surprise, its something that performs a relatively frivolous trick: It redraws a photo or streams a video in the style of an art masterpiece by a distinctive painter. In fact, its reminiscent of the kind of digital stunt youd see on Snapchat, and the idea of transmogrifying photos into Picassos cubism has already been accomplished.
The technology behind this is called neural style transfer, he explains. Its a big neural net that gets trained to repaint an original photograph using a particular style. He pulls out his phone and snaps a photo. A tap and a swipe later, it turns into a recognizable offshoot of Van Goghs The Starry Night. More impressively, it can render a video in a given style as it streams. But whats really different, he says, is something I cant see: Facebook has built its neural net so it will work on the phone itself.
That isnt novel, eitherApple has previously bragged that it does some neural computation on the iPhone. But the task was much harder for Facebook because, well, it doesnt control the hardware. Candela says his team could execute this trick because the groups work is cumulativeeach project makes it easier to build another, and every project is constructed so that future engineers can build similar products with less training required so stuff like this can be built quickly. It took eight weeks from us to start working on this to the moment we had a public test, which is pretty crazy, he says.
The other secret in pulling off a task like this, he says, is collaborationa mainstay of Facebook culture. In this case, easy access to other groups in Facebookspecifically the mobile team intimately familiar with iPhone hardwareled to the jump from rendering images in Facebooks data centers to performing the work on the phone itself. The benefits wont only come from making movies of your friends and relatives looking like the woman in The Scream. Its a step toward making all of Facebook more powerful. In the short term, this allows for quicker responses in interpreting languages and understanding text. Longer term, it could enable real-time analysis of what you see and say. Were talking about seconds, less than secondsthis has to be real time, he says. Were the social network. If Im going to make predictions about peoples feedback on a piece of content, [my system] needs to react immediately, right?
Candela takes another look at the Van Gogh-ified version of the selfie hes just shot, not bothering to mask his pride. By running complex neural nets on the phone, youre putting AI in the hands of everybody, he says. That does not happen by chance. Its part of how weve actually democratized AI inside the company.
Its been a long journey, he adds.
Candela was born in Spain. His family moved to Morocco when he was three, and he attended French language schools there. Though his grades were equally high in science and humanities, he decided to attend college in Madrid, ideally studying the hardest subject he could think of: telecommunications engineering, which not only required a mastery of physical stuff like antennas and amplifiers, but also an understanding of data, which was really cool. He fell under the spell of a professor who proselytized adaptive systems. Candela built a system that used intelligent filters to improve the signal of roaming phones; he describes it now as a baby neural net. His fascination with training algorithms, rather than simply churning out code, was further fueled by a semester he spent in Denmark in 2000, where he met Carl Rasmussen, a machine learning professor who had studied with the legendary Geoff Hinton in Torontothe ultimate cool kid credential in machine learning. Ready for graduation, Candela was about to enter a leadership program at Procter & Gamble when Rasmussen invited him to study for a PhD. He chose machine learning.
In 2007, he went to work at Microsoft Researchs lab in Cambridge, England. Soon after he arrived, he learned about a company-wide competition: Microsoft was about to launch Bing, but needed improvement in a key component of search adsaccurately predicting when a user would click on an ad. The company decided to open an internal competition. The winning teams solution would be tested to see if it was launch-worthy, and the team members would get a free trip to Hawaii. Nineteen teams competed, and Candelas tied for the winner. He got the free trip, but felt cheated when Microsoft stalled on the larger prizethe test that would determine if his work could be shipped.
What happened next shows Candelas resolve. He embarked on a crazy crusade to make the company give him a chance. He gave over 50 internal talks. He built a simulator to show his algorithms superiority. He stalked the VP who could make the decision, positioning himself next to the guy in buffet lines and synching his bathroom trips to hype his system from an adjoining urinal; he moved into an unused space near the executive, and popped into the mans office unannounced, arguing that a promise was a promise, and his algorithm was better.
Candelas algorithm shipped with Bing in 2009.
In early 2012, Candela visited a friend who worked at Facebook and spent a Friday on its Menlo Park campus. He was blown away to discover that at this company, people didnt have to beg for permission to get their work tested. They just did it. He interviewed at Facebook that next Monday. By the end of the week he had an offer.
Joining Facebooks ad team, Candelas task was to lead a group that would show more relevant ads. Though the system at the time did use machine learning, the models we were using were not very advanced. They were pretty simple, says Candela.
Another engineer who had joined Facebook at the same time as Candela (they attended the new employee code boot camp together) was Hussein Mehanna, who was similarly surprised at the lack of the companys progress in building AI into its system. When I was outside of Facebook and saw the quality of the product, I thought all of this was already in shape, but apparently it wasnt, Mehanna says. Within a couple of weeks I told Joaquin that whats really missing at Facebook is a proper, world-class machine learning platform. We had machines but we didnt have the right software that would could help the machines learn as much as possible from the data. (Mehanna, who is now Facebooks director of core machine learning, is also a Microsoft veteranas are several other engineers interviewed for this story. Coincidence?)
By machine learning platform, Mehanna was referring to the adoption of the paradigm that has taken AI from its barren winter of the last century (when early promises of thinking machines fell flat) to its more recent blossoming after the adoption of models roughly based on the way the brain behaves. In the case of ads, Facebook needs its system to do something that no human is capable of: Make an instant (and accurate!) prediction of how many people will click on a given ad. Candela and his team set out to create a new system based on the procedures of machine learning. And because the team wanted to build the system as a platform, accessible to all the engineers working in the division, they did it in a way where the modeling and training could be generalized and replicable.
One huge factor in building machine learning systems is getting quality datathe more the better. Fortunately, this is one of Facebooks biggest assets: When you have over a billion people interacting with your product every day, you collect a lot of data for your training sets, and you get endless examples of user behavior once you start testing. This allowed the ads team to go from shipping a new model every few weeks to shipping several models every week. And because this was going to be a platformsomething that others would use internally to build their own productsCandela made sure to do his work in a way where multiple teams were involved. Its a neat, three-step process. You focus on performance, then focus on utility, and then build a community, he says.
Candelas ad team has proven how transformative machine learning could be at Facebook. We became incredibly successful at predicting clicks, likes, conversions, and so on, he says. The idea of extending that approach to the larger service was natural. In fact, FAIR leader LeCun had already been arguing for a companion group devoted to applying AI to productsspecifically in a way that would spread the ML methodology more widely within the company. I really pushed for it to exist, because you need organizations with highly talented engineers who are not directly focused on products, but on basic technology that can be used by a lot of product groups, LeCun says.
Candela became director of the new AML team in October 2015 (for a while, because of his wariness, he kept his post in the ads division and shuttled between the two). He maintains a close relationship with FAIR, which is based in New York City, Paris, and Menlo Park, and where its researchers literally sit next to AML engineers.
The way the collaboration works can be illustrated by a product in progress that provides spoken descriptions of photos people post to Facebook. In the past few years, it has become a fairly standard AI practice to train a system to identify objects in a scene or make a general conclusion, like whether the photo was taken indoors or outdoors. But recently, FAIRs scientists have found ways to train neural nets to outline virtually every interesting object in the image and then figure out from its position and relation to the other objects what the photo is all aboutactually analyzing poses to discern that in a given picture people are hugging, or someone is riding a horse. We showed this to the people at AML, says LeCun, and they thought about it for a few moments and said, You know, theres this situation where that would be really useful. What emerged was a prototype for a feature that could let blind or visually impaired people put their fingers over an image and have their phones read them a description of whats happening.
We talk all the time, says Candela of his sister team. The bigger context is that to go from science to project, you need the glue, right? We are the glue.
Candela breaks down the applications of AI in four areas: vision, language, speech, and camera effects. All of those, he says, will lead to a content understanding engine. By figuring out how to actually know what content means, Facebook intends to detect subtle intent from comments, extract nuance from the spoken word, identify faces of your friends that fleetingly appear in videos, and interpret your expressions and map them onto avatars in virtual reality sessions.
We are working on the generalization of AI, says Candela. With the explosion of content we need to understand and analyze, our ability to generate labels that tells what things cant keep up. The solution lies in building generalized systems where work on one project can accrue to the benefit of other teams working on related projects. Says Candela, If I can build algorithms where I can transfer knowledge from one task to another, thats awesome, right?
That transfer can make a huge difference in how quickly Facebook ships products. Take Instagram. Since its beginning, the photo service displayed user photos in reverse chronological order. But early in 2016, it decided to use algorithms to rank photos by relevance. The good news was that because AML had already implemented machine learning in products like the News Feed, they didnt have to start from scratch, says Candela. They had one or two ML-savvy engineers contact some of the several dozen teams that are running ranking applications of one kind or another. Then you can clone that workflow and talk to the person if you have questions. As a result, Instagram was able to implement this epochal shift in only a few months.
The AML team is always on the prowl for use cases where its neural net prowess can be combined with a collection of different teams to produce a unique feature that works at Facebook scale. Were using machine learning techniques to build our core capabilities and delight our users,says Tommer Leyvand, a lead engineer of AMLs perception team. (He came fromwait for itMicrosoft.)
An example is a recent feature called Social Recommendations. About a year ago, an AML engineer and a product manager for Facebooks sharing team were talking about the high engagement that occurs when people ask their friends for recommendations about local restaurants or services. The issue is, how do you surface that to a user? says Rita Aquino, a product manager on AMLs natural language team. (She used to be a PM atoh, forget it.) The sharing team had been trying to do that by word matching certain phrases associated with recommendation requests. Thats not necessarily very precise and scalable, when you have a billion posts per day, Aquino says. By training neural nets and then testing the models with live behavior, the team was able to detect very subtle linguistic differences so it could accurately detect when someone was asking where to eat or buy shoes in a given area. That triggers a request that appears on the News Feed of appropriate contacts. The next step, also powered by machine learning, figures out when someone supplies a plausible recommendation, and actually shows the location of the business or restaurant on a map in the users News Feed.
Aquino says in the year and half she has been at Facebook, AI has gone from being a fairly rare component in products to something now baked in from conception. People expect the product they interact with to be smarter, she says. Teams see products like social recommendations, see our code, and goHow do we do that? You dont have to be a machine learning expert to try it out for your groups experience. In the case of natural language processing, the team built a system that other teams can easily access, called Deep Text. It helps power the ML technology behind Facebooks translation feature, which is used for over four billion posts a day.
For images and video, the AML team has built a machine learning vision platform called Lumos. It originated with Manohar Paluri, then an intern at FAIR who was working on a grand machine learning vision he calls the visual cortex of Facebooka means of processing and understanding all the images and videos posted on Facebook. At a 2014 hackathon, Paluri and colleague Nikhil Johri cooked up a prototype in a day and a half and showed the results to an enthusiastic Zuckerberg and Facebook COO Sheryl Sandberg. When Candela began AML, Paluri joined him to lead the computer vision team and to build out Lumos to help all of Facebooks engineers (including those at Instagram, Messenger, WhatsApp, and Oculus) make use of the visual cortex.
With Lumos, anybody in the company can use features from these various neural networks and build models for their specific scenario and see how it works, says Paluri, who holds joint positions in AML and FAIR. And then they can have a human in the loop correct the system, and retrain it, and push it, without anybody in the [AML] team being involved.
Paluri gives me a quick demo. He fires up Lumos on his laptop and we undertake a sample task: refining the neural nets ability to identify helicopters. A page packed with imagesif we keep scrolling, there would be 5,000appears on the screen, full of pictures of helicopters and things that arent quite helicopters. (One is a toy helicopter; others are objects in the sky at helicopter-ish angles.) For these datasets, Facebook uses publicly posted images from its propertiesthose limited to friends or other groups are off limits. Even though Im totally not an engineer, let alone an AI-adept, its easy to click on negative examples to train an image classifier for helicopters, as the jargon would have it.
Eventually, this classifying stepknown as supervised learningmay become automated, as the company pursues an ML holy grail known as unsupervised learning, where the neural nets are able to figure out for themselves what stuff is in all those images. Paluri says the company is making progress. Our goal is to reduce the number of (human) annotations by 100 times in the next year, he says.
In the long term, Facebook sees the visual cortex merging with the natural language platform for the generalized content understanding engine that Candela spoke about. No doubt we will end up combining them together, says Paluri. Then well just make itcortex.
Ultimately, Facebook hopes that the core principles it uses for its advances will spread even outside the company, through published papers and such, so that its democratizing methodology will spread machine learning more widely. Instead of spending ages and ages trying to build an intelligent application, you can build applications far faster, says Mehanna. Imagine the impact of this on medicine, safety, and transportation. I think building applications in those domains is going to be faster by a hundred-x magnitude.
Though AML is deeply involved in the epic process of helping Facebooks products see, interpret, and even speak, CEO Zuckerberg also sees it as critical to his vision of Facebook as a company working for social good. In Zuckerbergs 5,700-word manifesto about building communities, the CEO invoked the words artificial intelligence or AI seven times, all in the context of how machine learning and other techniques will help keep communities safe and well informed.
Fulfilling those goals wont be easy, for the same reasons that Candela first worried about taking the AML job. Even machine learning cant resolve all those people problems that come when you are trying to be the main source of information and personal connections for a couple billion users. Thats why Facebook is constantly fiddling with the algorithms that determine what users see in their News Feedshow do you train a system to deliver the optimal mix when youre not really sure that that is? I think this is almost an unsolvable problem, says Candela. Us showing news stories at random means youre wasting most of your time, right? Us only showing news stories from one friend, winner takes all. You could end up in this round-and-round discussion forever where neither of the two extremes is optimal. We try to bake in some explorations. Facebook will keep trying to solve this with AI, which has become the companys inevitable hammer to drive in every nail. Theres a bunch of action research in machine learning and in AI in optimizing the right level of exploration, Candela says, sounding hopeful.
Naturally, when Facebook found itself named a culprit in the fake news blame-athon, it called on its AI teams to quickly purge journalistic hoaxes from the service. It was an unusual all-hands effort, including even the long-horizon FAIR team, which was was tapped almost as consultants, says LeCun. As it turns out, FAIRs efforts had already unearthed a tool to help with the problem: a model called Word2Vec (vecbeing a short hand for the technical term, vectors). Word2Vec helps Facebook tag every piece of content with information, like its origin and who has shared it. (Trivia bonus: Google invented the model.) With that information, Facebook can understand the sharing patterns that characterize fake news, and potentially use its machine learning tactics to root out the hoaxes. It turns out that identifying fake news isnt so different than finding the best pages people want to see, says LeCun.
The preexisting platforms that Candelas team built made it possible for Facebook to launch those vetting products sooner than they could have done otherwise. How well they actually perform remains to be seen; Candela says its too soon to share metrics on how well the company has managed to reduce fake news by its algorithmic referees. But whether or not those new measures work, the quandary itself raises the question of whether an algorithmic approach to solving problemseven one enhanced by machine learningmight inevitably have unintended and even harmful consequences. Certainly some people contend that this happened in 2016.
Candela rejects that argument. I think that weve made the world a much better place, he says, and offers to tell a story. The day before our interview, Candela made a call to a Facebook connection he had met only oncea father of one of his friends. He had seen that person posting pro-Trump stories, and was perplexed by their thinking. Then Candela realized that his job is to make decisions based on data, and he was missing important information. So he messaged the person and asked for a conversation. The contact agreed, and they spoke by phone. It didnt change reality for me, but made me look at things in a very, very different way, says Candela. In a non-Facebook world I never would have had that connection.
In other words, though AI is essentialeven existentialfor Facebook, its not the only answer. The challenge is that AI is really in its infancy still, says Candela. Were only getting started.
Creative Art Direction: Redindhi Studio Photography by: Stephen Lam
Read the original post:
Follow Backchannel: Facebook | Twitter - Backchannel
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]