Announcing Microsofts open automation framework to red team generative AI Systems – Microsoft

Posted: February 26, 2024 at 12:18 am

Today we are releasing an open automation framework, PyRIT (Python Risk Identification Toolkit for generative AI), to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.

At Microsoft, we believe that security practices and generative AI responsibilities need to be a collaborative effort. We are deeply committed to developing tools and resources that enable every organization across the globe to innovate responsibly with the latest artificial intelligence advances. This tool, and the previous investments we have made in red teaming AI since 2019, represents our ongoing commitment to democratize securing AI for our customers, partners, and peers.

Red teaming AI systems is a complex, multistep process. Microsofts AI Red Team leverages a dedicated interdisciplinary group of security, adversarial machine learning, and responsible AI experts. The Red Team also leverages resources from the entire Microsoft ecosystem, including the Fairness center in Microsoft Research; AETHER, Microsofts cross-company initiative on AI Ethics and Effects in Engineering and Research; and the Office of Responsible AI. Our red teaming is part of our larger strategy to map AI risks, measure the identified risks, and then build scoped mitigations to minimize them.

Over the past year, we have proactively red teamed several high-value generative AI systems and models before they were released to customers. Through this journey, we found that red teaming generative AI systems is markedly different from red teaming classical AI systems or traditional software in three prominent ways.

We first learned that while red teaming traditional software or classical AI systems mainly focuses on identifying security failures, red teaming generative AI systems includes identifying both security risk as well as responsible AI risks. Responsible AI risks, like security risks, can vary widely, ranging from generating content that includes fairness issues to producing ungrounded or inaccurate content. AI red teaming needs to explore the potential risk space of security and responsible AI failures simultaneously.

Secondly, we found that red teaming generative AI systems is more probabilistic than traditional red teaming. Put differently, executing the same attack path multiple times on traditional software systems would likely yield similar results. However, generative AI systems have multiple layers of non-determinism; in other words, the same input can provide different outputs. This could be because of the app-specific logic; the generative AI model itself; the orchestrator that controls the output of the system can engage different extensibility or plugins; and even the input (which tends to be language), with small variations can provide different outputs. Unlike traditional software systems with well-defined APIs and parameters that can be examined using tools during red teaming, we learned that generative AI systems require a strategy that considers the probabilistic nature of their underlying elements.

Finally, the architecture of these generative AI systems varies widely: from standalone applications to integrations in existing applications to the input and output modalities, such as text, audio, images, and videos.

These three differences make a triple threat for manual red team probing. To surface just one type of risk (say, generating violent content) in one modality of the application (say, a chat interface on browser), red teams need to try different strategies multiple times to gather evidence of potential failures. Doing this manually for all types of harms, across all modalities across different strategies, can be exceedingly tedious and slow.

This does not mean automation is always the solution. Manual probing, though time-consuming, is often needed for identifying potential blind spots. Automation is needed for scaling but is not a replacement for manual probing. We use automation in two ways to help the AI red team: automating our routine tasks and identifying potentially risky areas that require more attention.

In 2021, Microsoft developed and released a red team automation framework for classical machine learning systems. Although Counterfit still delivers value for traditional machine learning systems, we found that for generative AI applications, Counterfit did not meet our needs, as the underlying principles and the threat surface had changed. Because of this, we re-imagined how to help security professionals to red team AI systems in the generative AI paradigm and our new toolkit was born.

We like to acknowledge out that there have been work in the academic space to automate red teaming such as PAIR and open source projects including garak.

PyRIT is battle-tested by the Microsoft AI Red Team. It started off as a set of one-off scripts as we began red teaming generative AI systems in 2022. As we red teamed different varieties of generative AI systems and probed for different risks, we added features that we found useful. Today, PyRIT is a reliable tool in the Microsoft AI Red Teams arsenal.

The biggest advantage we have found so far using PyRIT is our efficiency gain. For instance, in one of our red teaming exercises on a Copilot system, we were able to pick a harm category, generate several thousand malicious prompts, and use PyRITs scoring engine to evaluate the output from the Copilot system all in the matter of hours instead of weeks.

PyRIT is not a replacement for manual red teaming of generative AI systems. Instead, it augments an AI red teamers existing domain expertise and automates the tedious tasks for them. PyRIT shines light on the hot spots of where the risk could be, which the security professional than can incisively explore. The security professional is always in control of the strategy and execution of the AI red team operation, and PyRIT provides the automation code to take the initial dataset of harmful prompts provided by the security professional, then uses the LLM endpoint to generate more harmful prompts.

However, PyRIT is more than a prompt generation tool; it changes its tactics based on the response from the generative AI system and generates the next input to the generative AI system. This automation continues until the security professionals intended goal is achieved.

Abstraction and Extensibility is built into PyRIT. Thats because we always want to be able to extend and adapt PyRITs capabilities to new capabilities that generative AI models engender. We achieve this by five interfaces: target, datasets, scoring engine, the ability to support multiple attack strategies and providing the system with memory.

PyRIT was created in response to our belief that the sharing of AI red teaming resources across the industry raises all boats. We encourage our peers across the industry to spend time with the toolkit and see how it can be adopted for red teaming your own generative AI application.

Project created by Gary Lopez; Engineering: Richard Lundeen, Roman Lutz, Raja Sekhar Rao Dheekonda, Dr. Amanda Minnich; Broader involvement from Shiven Chawla, Pete Bryan, Peter Greko, Tori Westerhoff, Martin Pouliot, Bolor-Erdene Jagdagdorj, Chang Kawaguchi, Charlotte Siska, Nina Chikanov, Steph Ballard, Andrew Berkley, Forough Poursabzi, Xavier Fernandes, Dean Carignan, Kyle Jackson, Federico Zarfati, Jiayuan Huang, Chad Atalla, Dan Vann, Emily Sheng, Blake Bullwinkel, Christiano Bianchet, Keegan Hines, eric douglas, Yonatan Zunger, Christian Seifert, Ram Shankar Siva Kumar. Grateful for comments from Jonathan Spring.

To learn more about Microsoft Security solutions, visit ourwebsite.Bookmark theSecurity blogto keep up with our expert coverage on security matters. Also, follow us on LinkedIn (Microsoft Security) and X (@MSFTSecurity)for the latest news and updates on cybersecurity.

Link:

Announcing Microsofts open automation framework to red team generative AI Systems - Microsoft

Related Posts