DNA Data Storage Just Got a Bit More Practical

Posted: March 8, 2015 at 4:44 pm

For two years now, researchers have been storing digital information in the form of DNA, but there has remained some question as to whether its a practical solution for digital storage.

Now researchers at the Swiss Federal Institute of Technology in Zurich (ETHZ) have addressed a number of the problems associated with using DNA asdata storageenough so that they believe it can be used for error-free storage of information. If theirsolution proves successful, it could open the door for data storage that lasts for a million years.

Researchers around the world have been investigating a variety of new methods for storing digital information because well be lucky if the solutions we have now, like hard drives and servers, can keep faithful records for fifty years. DNA has been among those potential alternatives. But errors during data retrieval havebeen the methods bugaboo. Gaps and false information in the encoded data result from chemical degradation and mistakes in DNA sequencing.

In research published in the journal Angewandte Chemie, the Swiss team wasable to overcome the problem of chemical degradation of the DNA by encapsulating the genetic material in silica (glass) spheres withdiameters of around 150 nanometers.

In order to test the quality of their encapsulation, the researchers simulated a long period of time by storing the information-encoded DNA at temperatures between 60 and 70 degrees Celsius for up to a month. This simulated, within a few weeks, the degradation that would occur over hundreds of years under normal conditions.

After finding that the silica capsules outperformed several other materieals they tested, the researchers then moved on to ensuring that the DNA remained error free.

While advances in DNA sequencing make it possible to read stored data on DNA affordably, affordabilityand exactitudedont always go hand in hand. To overcome this problem, the researchers have developed a way to correct any errors based on the Reed-Solomon Codes, error-correcting codes normally used to ensure accurate data recovery after long-distance datatransmission.

The scheme adds just a bit more data to ensure that whats encoded is error free. In order to define a parabola, you basically need only three points, said Reinhard Heckel from ETH Zurichs Communication Technology Laboratory in a press release. We added a further two in case one gets lost or is shifted.

Continue reading here:
DNA Data Storage Just Got a Bit More Practical

Related Posts