International collaboration completes genome sequence of centipede

Posted: November 25, 2014 at 3:47 pm

PUBLIC RELEASE DATE:

25-Nov-2014

Contact: Glenna Picton picton@bcm.edu 713-798-4710 Baylor College of Medicine @bcmhouston

HOUSTON - (Nov. 25, 2014) - An international collaboration of scientists including Baylor College of Medicine has completed the first genome sequence of a myriapod, Strigamia maritima - a member of a group venomous centipedes that care for their eggs - and uncovered new clues about their biological evolution and unique absence of vision and circadian rhythm.

Over 100 researchers from 12 countries completed the project. They published their work online today in the journal PLOS Biology.

"This is the first myriapod and the last of the four classes of arthropods to have its genome sequenced," said Dr. Stephen Richards, assistant professor in the Human Genome Sequencing Center at Baylor, where the sequencing of the project was completed, and the corresponding author on the report. "Arthropods are particularly interesting for scientific study because they diverged into more species than any other animal group as they adapted in many ways to conquer the planet. The genome of the myriapod in comparison with previously completed genomes of the other arthropod classes gives us an important view of the evolutionary changes of these exciting species."

Dr. Ariel Chipman, of the Hebrew University of Jerusalem in Israel, Dr. David Ferrier, of The University of St. Andrews in the United Kingdom, and Dr. Michael Akam of the University of Cambridge in the UK, together with Richards served as key players in the collaboration.

"The arthropods have been around for over 500 million years and the relationship between the different groups and early evolution of the species is not really well understood," said Chipman, associate professor at the Hebrew University. "We have good sampling of insects but this is the first time a centipede, one of the more simple arthropods - simple in terms of body plan, no wings, simple repetitive segments, etc. -- has been sequenced. This is a more conservative genome, not necessarily ancient or primitive, but one that has retained ancient features more than other groups."

"From fossil evidence, we know the myriapods are one of three independent arthropod invasions of the land (from the sea), in addition to the insects and spiders. So they had to find a way to smell chemicals in air, rather then taste them in water. The team identified large gene expansions of the gustatory (taste) receptors suspected to fill the olfactory role that olfactory (smell) receptors play in insects," Richards said. "This is a nice example of parallel evolution where different group of genes expanded, providing a different solution to the same problem."

One interesting finding revolved around this particular centipede group losing its eyes at least 200 million years ago.

Go here to see the original:
International collaboration completes genome sequence of centipede

Related Posts