Atomic-scale image of two interacting donors in silicon. Credit: CQC2T
Australian researchers have located the sweet spot for positioning qubits in silicon to scale up atom-based quantum processors.
Researchers from the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) working with Silicon Quantum Computing (SQC) have located the sweet spot for positioning qubits in silicon to scale up atom-based quantum processors.
Creating quantum bits, or qubits, by precisely placing phosphorus atoms in silicon the method pioneered by CQC2T Director Professor Michelle Simmons is a world-leading approach in the development of a silicon quantum computer.
In the teams research, published today in Nature Communications, precision placement has proven to be essential for developing robust interactions or coupling between qubits.
Weve located the optimal position to create reproducible, strong and fast interactions between the qubits, says Professor Sven Rogge, who led the research.
We need these robust interactions to engineer a multi-qubit processor and, ultimately, a useful quantum computer.
Two-qubit gates the central building block of a quantum computer use interactions between pairs of qubits to perform quantum operations. For atom qubits in silicon, previous research has suggested that for certain positions in the silicon crystal, interactions between the qubits contain an oscillatory component that could slow down the gate operations and make them difficult to control.
For almost two decades, the potential oscillatory nature of the interactions has been predicted to be a challenge for scale-up, Prof. Rogge says.
Now, through novel measurements of the qubit interactions, we have developed a deep understanding of the nature of these oscillations and propose a strategy of precision placement to make the interaction between the qubits robust. This is a result that many believed was not possible.
Finding the sweet spot in crystal symmetries
The researchers say theyve now uncovered that exactly where you place the qubits is essential to creating strong and consistent interactions. This crucial insight has significant implications for the design of large-scale processors.
Silicon is an anisotropic crystal, which means that the direction the atoms are placed in can significantly influence the interactions between them, says Dr. Benoit Voisin, lead author of the research.
While we already knew about this anisotropy, no one had explored in detail how it could actually be used to mitigate the oscillating interaction strength.
We found that there is a special angle, or sweet spot, within a particular plane of the silicon crystal where the interaction between the qubits is most resilient. Importantly, this sweet spot is achievable using existing scanning tunnelling microscope (STM) lithography techniques developed at UNSW.
In the end, both the problem and its solution directly originate from crystal symmetries, so this is a nice twist.
Using a STM, the team are able to map out the atoms wave function in 2D images and identify their exact spatial location in the silicon crystal first demonstrated in 2014 with research published in Nature Materials and advanced in a 2016 Nature Nanotechnology paper.
In the latest research, the team used the same STM technique to observe atomic-scale details of the interactions between the coupled atom qubits.
Using our quantum state imaging technique, we could observe for the first time both the anisotropy in the wavefunction and the interference effect directly in the plane this was the starting point to understand how this problem plays out, says Dr Voisin.
We understood that we had to first work out the impact of each of these two ingredients separately, before looking at the full picture to solve the problem this is how we could find this sweet spot, which is readily compatible with the atomic placement precision offered by our STM lithography technique.
Building a silicon quantum computer atom by atom
UNSW scientists at CQC2T are leading the world in the race to build atom-based quantum computers in silicon. The researchers at CQC2T, and its related commercialisation company SQC, are the only team in the world that have the ability to see the exact position of their qubits in the solid state.
In 2019, the Simmons group reached a major milestone in their precision placement approach with the team first building the fastest two-qubit gate in silicon by placing two atom qubits close together, and then controllably observing and measuring their spin states in real-time. The research was published in Nature.
Now, with the Rogge teams latest advances, the researchers from CQC2T and SQC are positioned to use these interactions in larger scale systems for scalable processors.
Being able to observe and precisely place atoms in our silicon chips continues to provide a competitive advantage for fabricating quantum computers in silicon, says Prof. Simmons.
The combined Simmons, Rogge and Rahman teams are working with SQC to build the first useful, commercial quantum computer in silicon. Co-located with CQC2T on the UNSW Sydney campus, SQCs goal is to build the highest quality, most stable quantum processor.
References:
Valley interference and spin exchange at the atomic scale in silicon by B. Voisin, J. Bocquel, A. Tankasala, M. Usman, J. Salfi, R. Rahman, M. Y. Simmons, L. C. L. Hollenberg and S. Rogge, 30 November 2020, Nature Communications.DOI: 10.1038/s41467-020-19835-1
Spatially resolving valley quantum interference of a donor in silicon by J. Salfi, J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg and S. Rogge, 6 April 2014, Nature Materials.DOI: 10.1038/nmat3941
Spatial metrology of dopants in silicon with exact lattice site precision by M. Usman, J. Bocquel, J. Salfi, B. Voisin, A. Tankasala, R. Rahman, M. Y. Simmons, S. Rogge and L. C. L. Hollenberg, 6 June 2016, Nature Nanotechnology.DOI: 10.1038/nnano.2016.83
A two-qubit gate between phosphorus donor electrons in silicon by Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer and M. Y. Simmons, 17 July 2019, Nature.DOI: 10.1038/s41586-019-1381-2
Follow this link:
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]