Researchers at Princeton have discovered superconducting currents traveling along the outer edges of a superconductor with topological properties, suggesting a route to topological superconductivity that could be useful in future quantum computers. The superconductivity is represented by the black center of the diagram indicating no resistance to the current flow. The jagged pattern indicates the oscillation of the superconductivity which varies with the strength of an applied magnetic field. Credit: Stephan Kim, Princeton University
Princeton researchers detect a supercurrent a current flowing without energy loss at the edge of a superconductor with a topological twist.
A discovery that long eluded physicists has been detected in a laboratory at Princeton. A team of physicists detected superconducting currents the flow of electrons without wasting energy along the exterior edge of a superconducting material. The finding was published May 1 in the journal Science.
The superconductor that the researchers studied is also a topological semi-metal, a material that comes with its own unusual electronic properties. The finding suggests ways to unlock a new era of topological superconductivity that could have value for quantum computing.
To our knowledge, this is the first observation of an edge supercurrent in any superconductor, said Nai Phuan Ong, Princetons Eugene Higgins Professor of Physics and the senior author on the study.
Our motivating question was, what happens when the interior of the material is not an insulator but a superconductor? Ong said. What novel features arise when superconductivity occurs in a topological material?
Although conventional superconductors already enjoy widespread usage in magnetic resonance imaging (MRI) and long-distance transmission lines, new types of superconductivity could unleash the ability to move beyond the limitations of our familiar technologies.
Researchers at Princeton and elsewhere have been exploring the connections between superconductivity and topological insulators materials whose non-conformist electronic behaviors were the subject of the 2016 Nobel Prize in Physics for F. Duncan Haldane, Princetons Sherman Fairchild University Professor of Physics.
Topological insulators are crystals that have an insulating interior and a conducting surface, like a brownie wrapped in tin foil. In conducting materials, electrons can hop from atom to atom, allowing electric current to flow. Insulators are materials in which the electrons are stuck and cannot move. Yet curiously, topological insulators allow the movement of electrons on their surface but not in their interior.
To explore superconductivity in topological materials, the researchers turned to a crystalline material called molybdenum ditelluride, which has topological properties and is also a superconductor once the temperature dips below a frigid 100 milliKelvin, which is -459 degrees Fahrenheit.
Most of the experiments done so far have involved trying to inject superconductivity into topological materials by putting the one material in close proximity to the other, said Stephan Kim, a graduate student in electrical engineering, who conducted many of the experiments. What is different about our measurement is we did not inject superconductivity and yet we were able to show the signatures of edge states.
The team first grew crystals in the laboratory and then cooled them down to a temperature where superconductivity occurs. They then applied a weak magnetic field while measuring the current flow through the crystal. They observed that a quantity called the critical current displays oscillations, which appear as a saw-tooth pattern, as the magnetic field is increased.
Both the height of the oscillations and the frequency of the oscillations fit with predictions of how these fluctuations arise from the quantum behavior of electrons confined to the edges of the materials.
When we finished the data analysis for the first sample, I looked at my computer screen and could not believe my eyes, the oscillations we observed were just so beautiful and yet so mysterious, said Wudi Wang, who as first author led the study and earned his Ph.D. in physics from Princeton in 2019. Its like a puzzle that started to reveal itself and is waiting to be solved. Later, as we collected more data from different samples, I was surprisedat how perfectly the data fit together.
Researchers have long known that superconductivity arises when electrons, which normally move about randomly, bind into twos to form Cooper pairs, which in a sense dance to the same beat. A rough analogy is a billion couples executing the same tightly scripted dance choreography, Ong said.
The script the electrons are following is called the superconductors wave function, which may be regarded roughly as a ribbon stretched along the length of the superconducting wire, Ong said. A slight twist of the wave function compels all Cooper pairs in a long wire to move with the same velocity as a superfluid in other words acting like a single collection rather than like individual particles that flows without producing heating.
If there are no twists along the ribbon, Ong said, the Cooper pairs are stationary and no current flows. If the researchers expose the superconductor to a weak magnetic field, this adds an additional contribution to the twisting that the researchers call the magnetic flux, which, for very small particles such as electrons, follows the rules of quantum mechanics.
The researchers anticipated that these two contributors to the number of twists, the superfluid velocity and the magnetic flux, work together to maintain the number of twists as an exact integer, a whole number such as 2, 3 or 4 rather than a 3.2 or a 3.7. They predicted that as the magnetic flux increases smoothly, the superfluid velocity would increase in a saw-tooth pattern as the superfluid velocity adjusts to cancel the extra .2 or add .3 to get an exact number of twists.
The team measured the superfluid current as they varied the magnetic flux and found that indeed the saw-tooth pattern was visible.
In molybdenum ditelluride and other so-called Weyl semimetals, this Cooper-pairing of electrons in the bulk appears to induce a similar pairing on the edges.
The researchers noted that the reason why the edge supercurrent remains independent of the bulk supercurrent is currently not well understood. Ong compared the electrons moving collectively, also called condensates, to puddles of liquid.
From classical expectations, one would expect two fluid puddles that are in direct contact to merge into one, Ong said. Yet the experiment shows that the edge condensates remain distinct from that in the bulk of the crystal.
The research team speculates that the mechanism that keeps the two condensates from mixing is the topological protection inherited from the protected edge states in molybdenum ditelluride. The group hopes to apply the same experimental technique to search for edge supercurrents in other unconventional superconductors.
There are probably scores of them out there, Ong said.
Reference: Evidence for an edge supercurrent in the Weyl superconductor MoTe2 by Wudi Wang, Stephan Kim, Minhao Liu, F. A. Cevallos, Robert. J. Cava and Nai Phuan Ong, 1 May 2020, Science.DOI: 10.1126/science.aaw9270
Funding: The research was supported by the U.S. Army Research Office (W911NF-16-1-0116). The dilution refrigerator experiments were supported by the U.S. Department of Energy (DE- SC0017863). N.P.O. and R.J.C. acknowledge support from the Gordon and Betty Moore Foundations Emergent Phenomena in Quantum Systems Initiative through grants GBMF4539 (N.P.O.) and GBMF-4412 (R.J.C.). The growth and characterization of crystals were performed by F.A.C. and R.J.C., with support from the National Science Foundation (NSF MRSEC grant DMR 1420541).
Go here to read the rest:
A Discovery That Long Eluded Physicists: Superconductivity to the Edge - SciTechDaily
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]