Over the past few years, the field of biotechnology has advanced at a very high rate that scientists can now edit plants and animals at the genomic level. Different genetic engineering or genome-editing techniques such aszinc fingernucleases, transcription activator-like effector nucleases (TALENs), meganucleases and theCRISPR/Cas9 system have aided scientists to alter genomes to create modified organisms.
Like in plants and animals, could genome-editing be performed in humans? Yes. But a bigger question arises here, should genome editing techniques be used to create designer babies, to remove heritable diseases or to enhance the human capabilities? It is one of the most controversial topics among scientists and hence it all comes down to ethics.
In a recent research, Shoukhrat Mitalipov of Oregon Health Sciences University in Portland reported successfully repairing a genetic mutation in human embryos bringing the idea of genetic engineering in humans closer to reality.
To understand the ethical implications of genetic engineering in humans, it is important to first understand the basics.
Genetic engineering is basically manipulating or changing the DNA to alter the organisms appearance in a particular way. The human body cells contain encoded information compiled into a form called genes, which are responsible for the bodys growth, structure and functioning. Human genetic engineering decodes this information and applies it to the welfare of mankind.
For example, all over the world, several scientists have reported the singing in mice. However, the frequencies at which they sing is not audible to humans. The Alstons brown mouse or Alstons singing mouse is a famous example. It would be interesting to hear these songs too.
Japanese geneticists at the University of Osaka were conducting a research to study the mutagenic effects in a strain of mice that were genetically engineered. Among many effects, the mutation may have caused the alteration in the vocalization in the mice giving birth to an offspring which could sing at a frequency audible to humans.This genetic modification (which was actually an accident) may help in studying the communication patterns in mice as well as in comparing of similarities and differences with other mammals. Some other examples of genetic engineering are GloFish, drug-producing chickens, cows that make human-like milk, diesel-producing bacteria, banana vaccines and disease-preventing mosquitoes.
Based on their type of cell, there are two types of genetic engineering;
Human genetic engineering can further be classified into two types;
In human genetic engineering, the genes or the DNA of a person is changed. This can be used to bring about structural changes in human beings. More importantly, it can be used to introduce the genes for certain positive and desirable traits in embryos. Genetic engineering in humans can result in finding a permanent cure for many diseases.
Some people are born with or acquire exceptional qualities. If the genes responsible for these qualities can be identified, they can be introduced in the early embryos. The embryo develops into a baby called Designer baby or customized baby. Human genetic engineering is advancing at an increasing rate and might evolve to such an extent discovering new genes and implanting them into human embryos will be possible.
Let us take an example of bacteria to understand how genetic engineering works. Insulin is aprotein produced in the pancreasthat helps in the regulation of the sugar levels in our blood. People with type 1diabetes eithercannot produce insulin or produce insufficient insulin in the body. They have to acquire insulin from external sources to control their blood sugar levels. In 1982, Genetic engineering was used to produce a type of insulin which is similar to the human insulin, called the Humulin frombacteria which was then approved and licensed for human use.
Using this process, Chinese scientists have edited the genome of the human embryo for the first time. According to Nature News report, Researchers at Sun Yat-sen University in Guangzhou, China, were partially successful in using a genetic engineering technique to modify a gene in non-viable human embryos which was responsible for the fatal blood disorder.
The technique used, called CRISPR (short for clustered regularly interspaced short palindromic repeats) technology involves an enzyme complex known as CRISPR/Cas9, originating in bacteria as a defence system. CRISPR is a short, repeated DNA sequence that matches the genetic sequence of interest to be modified by the researchers. CRISPR works along with the Cas9 enzyme that acts like molecular scissors and cuts the DNA at a specific site.
As explained by John Reidhaar-Olson, a biochemist at Albert Einstein College of Medicine in New York First, in a simple explanation, the CRISPR/Cas9 complex navigates through the cells DNA, searching for the sequence that matches the CRISPR and binds to the sequence once found. The Cas9 then cuts the DNA which, in this case, is repaired by inserting a piece of DNA desired by the researcher.
Since 2013, CRISPR system has been to edit genes in adult human cells and animal embryos but for the first time has been used for modification in human embryos.
Junjiu Huang, a genetics researcher at Sun Yat-sen University, injected the CRISPR/Cas9 complex into human embryos with the aim of repairing a gene responsible for Beta thalassaemia which is a fatal blood disorder that reduces the production of haemoglobin. The non-viable embryos were obtained from local fertility clinics. These embryos would have been unable to survive independently after birth or develop properly as they had been fertilized by two sperms. The procedure was performed on 86 embryos and gene editing was allowed to take place in four days. Out of 86, 71 of the embryos survived and 54 of them were tested.
Splicing (removal of introns and joining of exonsineukaryotic mRNA) only occurred in 28 embryos successfully indicating the removal of faulty gene and the incorporation of the healthy gene in its place. However, in order for the technique to be used in viable human embryos, the success rate would need to be closer to 100%.
While partial success was achieved, certain worrisome mutations responsible for the detrimental effect on cells during gene-editing were also observed and at a much higher rate in mouse embryos or adult human cells undergoing the same procedure.
One of the most beneficial applications of genetic engineering is gene therapy. Gene therapy is one of the most important benefits of human genetic engineering. Over the last few years, gene therapy has successfully treated certain heart diseases. Driven by this success, researchers are working to find cures for all the genetic diseases. This will eventually lead to a healthier and more evolved human race.Inspired by the recent success of gene therapy trialsin human children and infants, researchers are now moving towards the treatment of genetic disorders before birth. The idea of using fetal gene therapy to treat genetic disorders that cant be treated after birth has generated hype among some of the scientists. Parents will be able to look forward to a healthy baby. Genetic engineering can be done in embryos prior to implantation into the mother.However, some are also questioning the feasibility and practicality of the therapy in humans.
While genetic engineering or modification may seem easy to cure diseases, it may produce certain side effects. While focusing on and treating one defect, there is a possibility it may cause another. A cell is responsible for various functions in the body and manipulating its genes without any counter effect or side effect may not be that easy.
Other than side effects, Cloning, for instance, can lead to an ethical disturbance among the humans risking the individuality and the diversity of human beings. Ironically, man will become just another man-made thing!
Among the social aspects of human genetic engineering, it can impose a heavy financial burden on the society, which may cause a rift between the rich and the poor in the society. Its feasibility and most importantly its affordability will also be a determinant of its popularity.
Human genetic engineering is a widely and rapidly advancing field. It can lead to miracles. But when assessing its benefits, its threats need to be assessed carefully too. Human genetic engineering can be beneficial to human beings and its potential advantages can come into reality only if it is handled with responsibility.
Like Loading...
Related
Go here to see the original:
Genetic Engineering in Humans - Curing Diseases and ...
- Benefits of Human Genetic Engineering - Popular Issues ... [Last Updated On: February 12th, 2015] [Originally Added On: February 12th, 2015]
- Pros and Cons of Genetic Engineering in Humans [Last Updated On: February 12th, 2015] [Originally Added On: February 12th, 2015]
- Human Genetic Engineering History [Last Updated On: February 12th, 2015] [Originally Added On: February 12th, 2015]
- Human Genetic Engineering - Buzzle [Last Updated On: February 12th, 2015] [Originally Added On: February 12th, 2015]
- Human Genetic Engineering - Popular Issues ... [Last Updated On: February 16th, 2015] [Originally Added On: February 16th, 2015]
- Human Genetic Engineering - Popular Issues [Last Updated On: July 28th, 2015] [Originally Added On: July 28th, 2015]
- Human Genetics Alert - The Threat of Human Genetic Engineering [Last Updated On: July 28th, 2015] [Originally Added On: July 28th, 2015]
- Gene therapy - Wikipedia, the free encyclopedia [Last Updated On: July 28th, 2015] [Originally Added On: July 28th, 2015]
- Human Genetic Engineering Pros And Cons [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Human Genetics [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Benefits of Human Genetic Engineering - Popular Issues [Last Updated On: August 4th, 2015] [Originally Added On: August 4th, 2015]
- Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: August 4th, 2015] [Originally Added On: August 4th, 2015]
- Human Genetics Alert - Human Genetic Engineering resources [Last Updated On: August 19th, 2015] [Originally Added On: August 19th, 2015]
- Human Genetic Engineering Cons: Why This Branch of Science ... [Last Updated On: August 19th, 2015] [Originally Added On: August 19th, 2015]
- Human Nature on Collision Course with Genetic Engineering ... [Last Updated On: August 27th, 2015] [Originally Added On: August 27th, 2015]
- Genetic Engineering In Humans [Last Updated On: August 27th, 2015] [Originally Added On: August 27th, 2015]
- Genetic Engineering - humans, body, used, process, plants ... [Last Updated On: August 27th, 2015] [Originally Added On: August 27th, 2015]
- Pros and Cons of Genetic Engineering in Humans - Part 1 [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Bioethics Of Human Genetic Engineering - Documentary Video ... [Last Updated On: September 30th, 2015] [Originally Added On: September 30th, 2015]
- Online Debate: Human genetic engineering is a good thing ... [Last Updated On: October 16th, 2015] [Originally Added On: October 16th, 2015]
- 00.03.07: Human Cloning, Genetic Engineering and Privacy [Last Updated On: October 16th, 2015] [Originally Added On: October 16th, 2015]
- Human Genetic Engineering : History [Last Updated On: December 22nd, 2015] [Originally Added On: December 22nd, 2015]
- Human Genetic Engineering - The Future of Human Evolution [Last Updated On: March 25th, 2016] [Originally Added On: March 25th, 2016]
- Human Genetic Engineering: A Guide for Activists, Skeptics ... [Last Updated On: September 20th, 2016] [Originally Added On: September 20th, 2016]
- Gene therapy - Wikipedia [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- 5 Key Pros and Cons of Human Genetic Engineering | NLCATP.org [Last Updated On: November 21st, 2016] [Originally Added On: November 21st, 2016]
- Human-pig hybrids might be unsettling. But they could save lives. - Washington Post [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Immoral Uses of Biotechnology Even With Good Intentions Are Evil - National Catholic Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Gene Editing Could Make You Smarter - Futurism - Futurism [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]
- The Threat of Human Genetic Engineering - hgalert.org [Last Updated On: April 12th, 2017] [Originally Added On: April 12th, 2017]
- Human Genetic Engineering on the Doorstep - hgalert.org [Last Updated On: April 15th, 2017] [Originally Added On: April 15th, 2017]
- Ethical Implications of Human Genetic Engineering | SAGE [Last Updated On: April 19th, 2017] [Originally Added On: April 19th, 2017]
- Breakthrough Regenerative Therapeutics Company Establishes Scientific Advisory Board - PR Newswire (press release) [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Technosplit: The bifurcation of humanity - Salon [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- 'Knights of Sidonia' is the Pinnacle of Gritty Mecha Anime - Inverse [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Two Representatives Offer A Look At How Congress Is Doing - WNIJ and WNIU [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Science and Scientists on the Vineyard: Genes at play with CRISPR - Martha's Vineyard Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- The Scopes Monkey Trial and global warming: Same playbook, different football - Baptist News Global [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- China unveils technology to create SUPER-HUMANS via hyper-muscular test-tube dogs - Express.co.uk [Last Updated On: July 19th, 2017] [Originally Added On: July 19th, 2017]
- Human Genetic Engineering Cons [Last Updated On: July 26th, 2017] [Originally Added On: July 26th, 2017]
- The ethics of creating GMO humans | The Spokesman-Review - The Spokesman-Review [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Human Genetic Engineering Facts [Last Updated On: August 14th, 2017] [Originally Added On: August 14th, 2017]
- Human Genetic Engineering Probe Ministries [Last Updated On: March 9th, 2020] [Originally Added On: March 9th, 2020]
- Human Genetic Engineering - AllAboutPopularIssues.org [Last Updated On: March 9th, 2020] [Originally Added On: March 9th, 2020]
- Engineering Illusions Part I: Religion and Technology III - Medium [Last Updated On: April 9th, 2021] [Originally Added On: April 9th, 2021]
- 16 Advantages and Disadvantages of Human Genetic Engineering [Last Updated On: June 23rd, 2021] [Originally Added On: June 23rd, 2021]
- Human genetic enhancement - Wikipedia [Last Updated On: October 19th, 2021] [Originally Added On: October 19th, 2021]
- Designer Babies: The Ethics of Human Genetic Engineering [Last Updated On: May 27th, 2022] [Originally Added On: May 27th, 2022]