by Tom Koulopoulos
The next era of computing will stretch our minds into a spooky new world that were just starting to understand.
In 1946 the Electronic Numerical Integrator and Computer, or the ENIAC, was introduced. The worlds first commercial computer was intended to be used by the military to project the trajectory of missiles, doing in a few seconds what it would otherwise take a human mathematician about three days. Its 20,000 vacuum tubes (the glowing glass light bulb-like predecessors to the transistor) connected by 500,000 hand soldered wires were a marvel of human ingenuity and technology.
Imagine if it were possible to go back to the developers and users of that early marvel and make the case that in 70 years there would be ten billion computers worldwide and half of the worlds population would be walking around with computers 100,000,000 times as powerful as the ENIAC in their pants pockets.
Youd have been considered a lunatic!
I want you to keep that in mind as you resist the temptation to do the same to me because of what Im about to share.
Quantum Supremacy
Digital computers will soon reach the limits of demanding technologies such as AI. Consider just the impact of these two projection: by 2025 driverless cars alone may produce as much data as exists in the entire world today; fully digitizing every cell in the human body would exceed ten times all of the data stored globally today. In these and many more cases we need to find ways to deal with unprecedented amounts of data and complexity. Enter quantum computing.
Youve likely heard of quantum computing. Amazingly, its a concept as old as digital computers. However, you may have discounted it as a far off future thats about as relevant to your life as flying cars. Well, it may be time to reconsider. Quantum computing is progressing at a rate that is surprising even those who are building it.
Understanding what quantum computers are and how they work challenges much of what we know of not just computing, but the basics of how the physical world appears to operate. Quantum mechanics, the basis for quantum computing, describes the odd and non-intuitive way the universe operates at a sub-atomic level. Its part science, part theory, and part philosophy.
Classical digital computers use what are called bits, something most all of us are familiar with. A bit can be a one or a zero. Quantum computers use what are called qubits (quantum bits). A quibit can also be a one or a zero but it can also be an infinite number of possibilities in between the two. The thing about qubits is that while a digital bit is always either on (1) or off (0), a qubit is always in whats called a superposition state, neither on nor off.
Although its a rough analogy, think of a qubit as a spinning coin thats just been flipped in the dark. While its spinning is it heads or tails? Its at the same time both and neither until it stops spinning and we then shine a light on it. However, a binary bit is like a coin that has a switch to make it glow in the dark. If I asked you Is it glowing? there would only be two answers, yes or no, and those would not change as it spins.
Thats what a qubit is like when compared to a classical digital bit. A quibit does not have a state until you effectively shine a light on it, while a binary bit maintains its state until that state is manually or mechanically changed.
Dont get too hung up on that analogy because as you get deeper into the quantum world trying to use what we know of the physical world is always a very rough and ultimately flawed way to describe the way things operate at the quantum level of matter.
However, the difficulty in understanding how quantum computers works hasnt stopped their progress. Google engineers recently talked about how the quantum computers they are building are progressing so fast that that they may achieve the elusive goal of whats called quantum supremacy (the point at which quantum computers can exceed the ability of classical binary computer) within months. While that may be a bit of stretch, even conservative projections put us on a 5-year timeline for quantum supremacy.
Quantum vs Classical Computing
Quantum computers, which are built using these qubits, will not replace all classical digital computers, but they will become an indispensable part of how we use computers to model the world and to integrate artificial intelligence into our lives.
Quantum computing will be one of the most radical shifts in the history of science, likely outpacing any advances weve seen to date with prior technological revolutions, such as the advent of semiconductors. They will enable us to take on problems that would take even the most powerful classical supercomputers millions or even billions of years to solve. Thats not just because quantum computers are faster but because they can approach problem solving with massive parallelism using the qualities of how quantum particles behave.
The irony is that the same thing that makes quantum computers so difficult to understand, their harnessing of natures smallest particles, also gives them the ability to precisely simulate the biological world at its most detailed. This means that we can model everything from chemical reactions, to biology, to pharmaceuticals, to the inner workings of the universe, to the spread of pandemics, in ways that were simply impossible with classical computers.
A Higher Power
The reason for the all of the hype behind the rate at which quantum computers are evolving has to do with whats called doubly exponential growth.
The exponential growth that most of us are familiar with, and which is being talked about lately, refers to the classical doubling phenomenon. For example, Moores law, which projects the doubling in the density of transistors on a silicon chip every 18 months. Its hard to wrap our linear brains around exponential growth, but its nearly impossible to wrap them around doubly exponential growth.
Doubly exponential growth simply has no analog in the physical world. Doubly exponential growth means that you are raising a number to a power and then raising that to another power. It looks like this 510^10.
What this means is that while a binary computer can store 256 states with 8 bits (28), a quantum computer with eight qubits (recall that a qubit is the conceptual equivalent of a digital bit in a classical computer) can store 1077 bits of data! Thats a number with 77 zeros, or, to put it into perspective, scientists estimate that there are 1078 atoms in the entire visible universe.
Even Einstein had difficulty with entanglement calling it, spooky action at a distance.
By the way, just to further illustrate the point, if you add one more qubit the number of bits (or more precisely, states) that can be stored just jumped to 10154 (one more bit in a classical computer would only raise the capacity to 1078).
Heres whats really mind blowing about quantum computing (as if what we just described isnt already mind-blowing enough.) A single caffeine molecule is made up of 24 atoms and it can have 1048 quantum states (there are only 1050 atoms that make up the Earth). Modeling caffeine precisely is simply not possible with classical computers. Using the worlds fastest super computer it would take 100,000,000,000,000 times the age of the universe to process the 1048 calculations that represent all of the possible states of a caffeine molecule!
So, the obvious question is, How could any computer, quantum or otherwise, take on something of that magnitude? Well, how does nature do it? That cup of coffee youre drinking has trillions of caffeine molecules and nature is doing just fine handling all of the quantum states they are in. Since nature is a quantum machine what better way to model it than a quantum computer?
Spooky Action
The other aspect of quantum computing that challenges our understanding of how the quantum world works is whats called entanglement. Entanglement describes a phenomenon in which two quantum particles are connected in such a way that no matter how great the distance between them they will both have the same state when they are measured.
At first blush that doesnt seem to be all that novel. After all, if I were to paint two balls red and then separate them by the distance of the universe, both would still be red. However, the state of a quantum object is always in whats called a superposition, meaning that it has no inherent state. Think of our coin flip example from earlier where the coin is in a superposition state until it stops spinning.
If instead of a color its two states were up or down it would always be in both states while also in neither state, that is until an observation or measurement forces it to pick a state. Again, think back to the spinning coin.
Now imagine two coins entangled and flipped simultaneously at different ends of the universe. Once you stop the spin of one coin and reveal that its heads the other coin would instantly stop spinning and also be heads.
If this makes your head hurt, youre in good company. Even Einstein had difficulty with entanglement calling it, spooky action at a distance. His concern was that the two objects couldnt communicate at a speed faster than the speed of light. Whats especially spooky about this phenomenon is that the two objects arent communicating at all in any classical sense of the term communication.
Entanglement creates the potential for all sorts of advances in computing, from how we create 100 percent secure communications against cyberthreats, to the ultimate possibility of teleportation.
Room For Possibility
So, should you run out a buy a quantum computer? Well, its not that easy. Qubits need to be super cooled and are exceptionally finicky particles that require an enormous room-sized apparatus and overhead. Not unlike the ENIAC once did.
You can however use a quantum computer for free or lease its use for more sophisticated applications For example, IBMs Q, is available both as an open source learning environment for anyone as well as a powerful tool for fintech users. However, Ill warn you that even if youre accustomed to programming computers, it will still feel as though youre teaching yourself to think in an entirely foreign language.
The truth is that we might as well be surrounded by 20,000 glowing vacuum tubes and 500,000 hand soldered wires. We can barely imagine what the impact of quantum computing will be in ten to twenty years. No more so than the early users of the ENIAC could have predicted the mind-boggling ways in which we use digital computers today.
Listen in to my two podcasts with scientists from IBM, MIT, and Harvard to find out more about quantum computing. Quantum Computing Part I, Quantum Computing Part II
This article was originally published on Inc.
Image credit: Pixabay
Choose how you want the latest innovation content delivered to you:
Tom Koulopoulos is the author of 10 books and founder of the Delphi Group, a 25-year-old Boston-based think tank and a past Inc. 500 company that focuses on innovation and the future of business. He tweets from @tkspeaks.
Read the rest here:
The End Of The Digital Revolution Is Coming: Here's What's Next - Innovation Excellence
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]