Executive Summary
Recent advances in AI are best thought of as a drop in the cost of prediction.Prediction is useful because it helps improve decisions. But it isnt the only input into decision-making; the other key input is judgment. Judgmentis the process of determining what the reward to a particular action is in a particular environment.In many cases, especially in the near term, humans will be required to exercise this sort of judgment. Theyll specialize in weighing the costs and benefits of different decisions, and then that judgment will be combined with machine-generated predictions to make decisions. But couldnt AI calculate costs and benefits itself? Yes, but someone would have had to program the AI as to what the appropriate profit measure is. This highlights a particular form of human judgment that we believe will become both more common and more valuable.
With the recent explosion in AI, there has been the understandable concern about its potential impact on human work. Plenty of people have tried to predict which industries and jobs will be most affected, and which skills will be most in demand. (Should you learn to code? Or will AI replace coders too?)
Rather than trying to predict specifics, we suggest an alternative approach. Economic theory suggests that AI will substantially raise the value of human judgment. People who display good judgment will become more valuable, not less. But to understand what good judgment entails and why it will become more valuable, we have to be precise about what we mean.
Recent advances in AI are best thought of as a drop in the cost of prediction. By prediction, we dont just mean the futureprediction is about using data that you have to generate data that you dont have, often by translating large amounts of data into small, manageable amounts. For example, using images divided into parts to detect whether or not the image contains a human face is a classic prediction problem. Economic theory tells us that as the cost of machine prediction falls, machines will do more and more prediction.
Prediction is useful because it helps improve decisions. But it isnt the only input into decision-making; the other key input is judgment. Consider the example of a credit card network deciding whether or not to approve each attempted transaction. They want to allow legitimate transactions and decline fraud. They use AI to predict whether each attempted transaction is fraudulent. If such predictions were perfect, the networks decision process is easy. Decline if and only if fraud exists.
However, even the best AIs make mistakes, and that is unlikely to change anytime soon. The people who have run the credit card networks know from experience that there is a trade-off between detecting every case of fraud and inconveniencing the user. (Have you ever had a card declined when you tried to use it while traveling?) And since convenience is the whole credit card business, that trade-off is not something to ignore.
This means that to decide whether to approve a transaction, the credit card network has to know the cost of mistakes. How bad would it be to decline a legitimate transaction? How bad would it be to allow a fraudulent transaction?
Someone at the credit card association needs to assess how the entire organization is affected when a legitimate transaction is denied. They need to trade that off against the effects of allowing a transaction that is fraudulent. And that trade-off may be different for high net worth individuals than for casual card users. No AI can make that call. Humans need to do so.This decision is what we call judgment.
Judgment is the process of determining what the reward to a particular action is in a particular environment. Judgment is howwe work out the benefits and costs of different decisions in different situations.
Credit card fraud is an easy decision to explain in this regard. Judgment involves determining how much money is lost in a fraudulent transaction, how unhappy a legitimate customer will be when a transaction is declined, as well as the reward for doing the right thing and allowing good transactions and declining bad ones. In many other situations, the trade-offs are more complex, and the payoffs are not straightforward. Humans learn the payoffs to different outcomes by experience, making choices and observing their mistakes.
Getting the payoffs right is hard. It requires an understanding of what your organization cares about most, what it benefits from, and what could go wrong.
In many cases, especially in the near term, humans will be required to exercise this sort of judgment. Theyll specialize in weighing the costs and benefits of different decisions, and then that judgment will be combined with machine-generated predictions to make decisions.
But couldnt AI calculate costs and benefits itself? In the credit card example, couldnt AI use customer data to consider the trade-off and optimize for profit? Yes, but someone would have had to program the AI as to what the appropriate profit measure is. This highlights a particular form of human judgment that we believe will become both more common and more valuable.
Like people, AIs can also learn from experience. One important technique in AI is reinforcement learning whereby a computer is trained to take actions that maximize a certain reward function. For instance, DeepMinds AlphaGo was trained this way to maximize its chances of winning the game of Go. Games are often easy to apply this method of learning because the reward can be easily described and programmed shutting out a human from the loop.
But games can be cheated. As Wired reports, when AI researchers trained an AI to play the boat racing game, CoastRunners, the AI figured out how to maximize its score by going around in circles rather than completing the course as was intended. One might consider this ingenuity of a type, but when it comes to applications beyond games this sort of ingenuity can lead to perverse outcomes.
The key point from the CoastRunners example is that in most applications, the goal given to the AI differs from the true and difficult-to-measure objective of the organization. As long as that is the case, humans will play a central role in judgment, and therefore in organizational decision-making.
In fact, even if an organization is enabling AI to make certain decisions, getting the payoffs right for the organization as a whole requires an understanding of how the machines make those decisions. What types of prediction mistakes are likely? How might a machine learn the wrong message?
Enter Reward Function Engineering. As AIs serve up better and cheaper predictions, there is a need to think clearly and work out how to best use those predictions. Reward Function Engineering is the job of determining the rewards to various actions, given the predictions made by the AI. Being great at itrequires having an understanding of the needs of the organization and the capabilities of the machine. (And it is not the same as putting a human in the loop to help train the AI.)
Sometimes Reward Function Engineering involves programming the rewards in advance of the predictions so that actions can be automated. Self-driving vehicles are an example of such hard-coded rewards. Once the prediction is made, the action is instant. But as the CoastRunners example illustrates, getting the reward right isnt trivial. Reward Function Engineering has to consider the possibility that the AI will over-optimize on one metric of success, and in doing so act in a way thats inconsistent with the organizations broader goals.
At other times, such hard-coding of the rewards is too difficult. There may so be many possible predictions that it is too costly for anyone to judge all the possible payoffs in advance. Instead, some human needs to wait for the prediction to arrive, and then assess the payoff. This is closer to how most decision-making works today, whether or not it includes machine-generated predictions. Most of us already do some Reward Function Engineering, but for humans not machines. Parents teach their children values. Mentors teach new workers how the system operates. Managers give objectives to their staff, and then tweak them to get better performance. Every day, we make decisions and judge the rewards. But when we do this for humans, prediction and judgment are grouped together, and the distinct role of Reward Function Engineering has not needed to be explicitly separate.
As machines get better at prediction, the distinct value of Reward Function Engineering will increase as the application of human judgment becomes central.
Overall, will machine prediction decrease or increase the amount of work available for humans in decision-making? It is too early to tell. On the one hand, machine prediction will substitute for human prediction in decision-making. On the other hand, machine prediction is a complement to human judgment. And cheaper prediction will generate more demand for decision-making, so there will be more opportunities to exercise human judgment. So, although it is too early to speculate on the overall impact on jobs, there is little doubt that we will soon be witness to a great flourishing of demand for human judgment in the form of Reward Function Engineering.
Read the original post:
How AI Will Change the Way We Make Decisions - Harvard Business Review
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]