Atomic imperfections move quantum communication network closer … – Phys.Org

Posted: June 24, 2017 at 2:59 pm

June 23, 2017 Single spins in silicon carbide absorb and emit single photons based on the state of their spin. Credit: Prof. David Awschalom

An international team led by the University of Chicago's Institute for Molecular Engineering has discovered how to manipulate a weird quantum interface between light and matter in silicon carbide along wavelengths used in telecommunications.

The work advances the possibility of applying quantum mechanical principles to existing optical fiber networks for secure communications and geographically distributed quantum computation. Prof. David Awschalom and his 13 co-authors announced their discovery in the June 23 issue of Physical Review X.

"Silicon carbide is currently used to build a wide variety of classical electronic devices today," said Awschalom, the Liew Family Professor in Molecular Engineering at UChicago and a senior scientist at Argonne National Laboratory. "All of the processing protocols are in place to fabricate small quantum devices out of this material. These results offer a pathway for bringing quantum physics into the technological world."

The findings are partly based on theoretical models of the materials performed by Awschalom's co-authors at the Hungarian Academy of Sciences in Budapest. Another research group in Sweden's Linkping University grew much of the silicon carbide material that Awschalom's team tested in experiments at UChicago. And another team at the National Institutes for Quantum and Radiological Science and Technology in Japan helped the UChicago researchers make quantum defects in the materials by irradiating them with electron beams.

Quantum mechanics govern the behavior of matter at the atomic and subatomic levels in exotic and counterintuitive ways as compared to the everyday world of classical physics. The new discovery hinges on a quantum interface within atomic-scale defects in silicon carbide that generates the fragile property of entanglement, one of the strangest phenomena predicted by quantum mechanics.

Entanglement means that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

"This non-intuitive nature of quantum mechanics might be exploited to ensure that communications between two parties are not intercepted or altered," Awschalom said.

Exploiting quantum mechanics

The findings enhance the once-unexpected opportunity to create and control quantum states in materials that already have technological applications, Awschalom noted. Pursuing the scientific and technological potential of such advances will become the focus of the newly announced Chicago Quantum Exchange, which Awschalom will direct.

An especially intriguing aspect of the new paper was that silicon carbide semiconductor defects have a natural affinity for moving information between light and spin (a magnetic property of electrons). "A key unknown has always been whether we could find a way to convert their quantum states to light," said David Christle, a postdoctoral scholar at the University of Chicago and lead author of the work. "We knew a light-matter interface should exist, but we might have been unlucky and found it to be intrinsically unsuitable for generating entanglement. We were very fortuitous in that the optical transitions and the process that converts the spin to light is of very high quality."

The defect is a missing atom that causes nearby atoms in the material to rearrange their electrons. The missing atom, or the defect itself, creates an electronic state that researchers control with a tunable infrared laser.

"What quality basically means is: How many photons can you get before you've destroyed the quantum state of the spin?" said Abram Falk, a researcher at the IBM Thomas J. Watson Resarch Center in Yorktown Heights, N.Y., who is familiar with the work but not a co-author on the paper.

The UChicago researchers found that they could potentially generate up to 10,000 photons, or packets of light, before they destroyed the spin state. "That would be a world record in terms of what you could do with one of these types of defect states," Falk added.

Awschalom's team was able to turn the quantum state of information from single electron spins in commercial wafers of silicon carbide into light and read it out with an efficiency of approximately 95 percent.

Millisecond coherence

The duration of the spin statecalled coherencethat Awschalom's team achieved was a millisecond. Not much by clock standards, but quite a lot in the realm of quantum states, in which multiple calculations can be carried out in a nanosecond, or a billionth of a second.

The feat opens up new possibilities in silicon carbide because its nanoscale defects are a leading platform for new technologies that seek to use quantum mechanical properties for quantum information processing, sensing magnetic and electric fields and temperature with nanoscale resolution, and secure communications using light.

"There's about a billion-dollar industry of power electronics built on silicon carbide," Falk said. "Following this work, there's an opportunity to build a platform for quantum communication that leverages these very advanced classical devices in the semiconductor industry," he said.

Most researchers studying defects for quantum applications have focused on an atomic defect in diamond, which has become a popular visible-light testbed for these technologies.

"Diamond has been this huge industry of quantum control work," Falk noted. Dozens of research groups across the country have spent more than a decade perfecting the material to achieve standards that Awschalom's group has mastered in silicon carbide after only a few years of investigation.

Silicon carbide versatility

"There are many different forms of silicon carbide, and some of them are commonly used today in electronics and optoelectronics," Awschalom said. "Quantum states are present in all forms of silicon carbide that we've explored. This bodes well for introducing quantum mechanical effects into both electronic and optical technologies."

Researchers now are beginning to wonder if this type of physics also may work in other materials, Falk noted.

"Moreover, can we rationally design a defect that has the properties we want, not just stumble into one?" he asked.

Defects are the key.

"For decades the electronics industry has come up with a myriad of tricks to remove all the defects from their devices because defects often cause problems in conventional electronics," Awschalom explained. "Ironically, we're putting the defects back in for quantum systems."

Explore further: Exceptionally robust quantum states found in industrially important semiconductor

More information: "Isolated Spin Qubuits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface," Physical Review X (2017). journals.aps.org/prx/abstract/10.1103/PhysRevX.7.021046

Harnessing solid-state quantum bits, or qubits, is a key step toward the mass production of electronic devices based on quantum information science and technology. However, realizing a robust qubit with a long lifetime is ...

A discovery by physicists at UC Santa Barbara may earn silicon carbide -- a semiconductor commonly used by the electronics industry -- a role at the center of a new generation of information technologies designed to exploit ...

Quantum computersa possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits "0" and "1." ...

An electronics technology that uses the "spin" - or magnetization - of atomic nuclei to store and process information promises huge gains in performance over today's electron-based devices. But getting there is proving challenging.

For 60 years computers have become smaller, faster and cheaper. But engineers are approaching the limits of how small they can make silicon transistors and how quickly they can push electricity through devices to create digital ...

Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can ...

An international team led by the University of Chicago's Institute for Molecular Engineering has discovered how to manipulate a weird quantum interface between light and matter in silicon carbide along wavelengths used in ...

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium ...

(Phys.org)In the late 1800s when scientists were still trying to figure out what exactly atoms are, one of the leading theories, proposed by Lord Kelvin, was that atoms are knots of swirling vortices in the aether. Although ...

New research by physicists at the University of Chicago settles a longstanding disagreement over the formation of exotic quantum particles known as Efimov molecules.

Researchers from the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder have demonstrated a new mobile, ground-based system that could scan and map atmospheric gas plumes over kilometer ...

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ...

Adjust slider to filter visible comments by rank

Display comments: newest first

How many times is Phys.org going to repeat this fallacy ?

The distance of this influence is definitely limited by decoherence, i.e. the tendency of vacuum fluctuations (which manifest itself like the CMB radiation and thermal noise) to disrupt the entangled state (i.e. to desynchronize pilot waves of entangled objects). Inside the diamond or silicon carbide (which is similar to diamond in many extents) the strength of bonds between atoms is so high, that the effects of thermal vibrations are diminished, which makes these materials perspective systems for storage of spin and another states of atoms. I just don't think, that these states are quantized, because they require many quanta of energy (more than 10.000 photons) for switching their spin state. IMO they're rather close to classical systems of storage information within laser pulses, like the layers of dyes etc.. The another question whether the speed of this influence is infinite is also disputable, despite that we have indicia, in pure quantum system it gets actually superluminal.

Entanglement is two photons created at the source with opposite spins which sum to zero. There is no such thing as spooky action at a distance, full stop.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

View post:

Atomic imperfections move quantum communication network closer ... - Phys.Org

Related Posts