genetic engineering | Definition, Process, & Uses …

Posted: June 22, 2017 at 4:48 am

Genetic engineering, the artificial manipulation, modification, and recombination of DNA or other nucleic acid molecules in order to modify an organism or population of organisms.

The term genetic engineering initially referred to various techniques used for the modification or manipulation of organisms through the processes of heredity and reproduction. As such, the term embraced both artificial selection and all the interventions of biomedical techniques, among them artificial insemination, in vitro fertilization (e.g., test-tube babies), cloning, and gene manipulation. In the latter part of the 20th century, however, the term came to refer more specifically to methods of recombinant DNA technology (or gene cloning), in which DNA molecules from two or more sources are combined either within cells or in vitro and are then inserted into host organisms in which they are able to propagate.

The possibility for recombinant DNA technology emerged with the discovery of restriction enzymes in 1968 by Swiss microbiologist Werner Arber. The following year American microbiologist Hamilton O. Smith purified so-called type II restriction enzymes, which were found to be essential to genetic engineering for their ability to cleave a specific site within the DNA (as opposed to type I restriction enzymes, which cleave DNA at random sites). Drawing on Smiths work, American molecular biologist Daniel Nathans helped advance the technique of DNA recombination in 197071 and demonstrated that type II enzymes could be useful in genetic studies. Genetic engineering based on recombination was pioneered in 1973 by American biochemists Stanley N. Cohen and Herbert W. Boyer, who were among the first to cut DNA into fragments, rejoin different fragments, and insert the new genes into E. coli bacteria, which then reproduced.

Most recombinant DNA technology involves the insertion of foreign genes into the plasmids of common laboratory strains of bacteria. Plasmids are small rings of DNA; they are not part of the bacteriums chromosome (the main repository of the organisms genetic information). Nonetheless, they are capable of directing protein synthesis, and, like chromosomal DNA, they are reproduced and passed on to the bacteriums progeny. Thus, by incorporating foreign DNA (for example, a mammalian gene) into a bacterium, researchers can obtain an almost limitless number of copies of the inserted gene. Furthermore, if the inserted gene is operative (i.e., if it directs protein synthesis), the modified bacterium will produce the protein specified by the foreign DNA.

A subsequent generation of genetic engineering techniques that emerged in the early 21st century centred on gene editing. Gene editing, based on a technology known as CRISPR-Cas9, allows researchers to customize a living organisms genetic sequence by making very specific changes to its DNA. Gene editing has a wide array of applications, being used for the genetic modification of crop plants and livestock and of laboratory model organisms (e.g., mice). The correction of genetic errors associated with disease in animals suggests that gene editing has potential applications in gene therapy for humans.

Genetic engineering has advanced the understanding of many theoretical and practical aspects of gene function and organization. Through recombinant DNA techniques, bacteria have been created that are capable of synthesizing human insulin, human growth hormone, alpha interferon, a hepatitis B vaccine, and other medically useful substances. Plants may be genetically adjusted to enable them to fix nitrogen, and genetic diseases can possibly be corrected by replacing dysfunctional genes with normally functioning genes. Nevertheless, special concern has been focused on such achievements for fear that they might result in the introduction of unfavourable and possibly dangerous traits into microorganisms that were previously free of theme.g., resistance to antibiotics, production of toxins, or a tendency to cause disease. Likewise, the application of gene editing in humans has raised ethical concerns, particularly regarding its potential use to alter traits such as intelligence and beauty.

In 1980 the new microorganisms created by recombinant DNA research were deemed patentable, and in 1986 the U.S. Department of Agriculture approved the sale of the first living genetically altered organisma virus, used as a pseudorabies vaccine, from which a single gene had been cut. Since then several hundred patents have been awarded for genetically altered bacteria and plants. Patents on genetically engineered and genetically modified organisms, particularly crops and other foods, however, were a contentious issue, and they remained so into the first part of the 21st century.

ethics: Bioethics

Read This Article

origins of agriculture: Genetic engineering

Read This Article

history of science: The 20th-century revolution

Read This Article

in genetics

ReadThisArticle

in DNA sequencing

ReadThisArticle

in recombinant DNA technology

ReadThisArticle

in George Ledyard Stebbins, Jr.

ReadThisArticle

in Sir Ian Wilmut

ReadThisArticle

in genetically modified organism (GMO)

ReadThisArticle

Read this article:
genetic engineering | Definition, Process, & Uses ...

Related Posts