In 1999, a group of scientists scoured the genomes of around 150 pairs of siblings in an attempt to find genes that are involved in autism. They came up empty. They reasoned that this was because the risk of autism is not governed by a small number of powerful genes, which their study would have uncovered. Instead, its likely affected by a large number of genes that each have a small effect. Perhaps, they wrote, there might be 15 such genes or more.
Two decades later, that figure seems absurdly and naively low. If you told a modern geneticist that a complex traitwhether a physical characteristic like height or weight, or the risk of a disease like cancer or schizophreniawas the work of just 15 genes, theyd probably laugh. Its now thought that such traits are the work of thousands of genetic variants, working in concert. The vast majority of them have only tiny effects, but together, they can dramatically shape our bodies and our health. Theyre weak individually, but powerful en masse.
But Evan Boyle, Yang Li, and Jonathan Pritchard from Stanford University think that this framework doesnt go far enough.
They note that researchers often assume that those thousands of weakly-acting genetic variants will all cluster together in relevant genes. For example, you might expect that height-associated variants will affect genes that control the growth of bones. Similarly, schizophrenia-associated variants might affect genes that are involved in the nervous system. Theres been this notion that for every gene thats involved in a trait, thered be a story connecting that gene to the trait, says Pritchard. And he thinks thats only partly true.
Yes, he says, there will be core genes that follow this pattern. They will affect traits in ways that make biological sense. But genes dont work in isolation. They influence each other in large networks, so that if a variant changes any one gene, it could change an entire gene network, says Boyle. He believes that these networks are so thoroughly interconnected that every gene is just a few degrees of separation away from every other. Which means that changes in basically any gene will ripple inwards to affect the core genes for a particular trait.
The Stanford trio call this the omnigenic model. In the simplest terms, theyre saying that most genes matter for most things.
More specifically, it means that all the genes that are switched on in a particular type of cellsay, a neuron or a heart muscle cellare probably involved in almost every complex trait that involves those cells. So, for example, nearly every gene thats switched on in neurons would play some role in defining a persons intelligence, or risk of dementia, or propensity to learn. Some of these roles may be starring parts. Others might be mere cameos. But few genes would be left out of the production altogether.
This might explain why the search for genetic variants behind complex traits has been so arduous. For example, a giant study called er GIANT looked at the genomes of 250,000 people and identified 700 variants that affect our height. As predicted, each has a tiny effect, raising a persons stature by just a millimeter. And collectively, they explain just 16 percent of the variation in heights that you see in people of European ancestry. Thats not very much, especially when scientists estimate that some 80 percent of all human height variation can be explained by genetic factors. Wheres that missing fraction?
Pritchards team re-analyzed the GIANT data and calculated that there are probably more than 100,000 variants that affect our height, and most of these shift it by just a seventh of a millimeter. Theyre so minuscule in their effects that its hard to tell them apart from statistical noise, which is why geneticists typically ignore them. And yet, Pritchards team noted that many of these weak signals cropped up consistently across different studies, which suggests that they are real results. And since these variants are spread evenly across the entire genome, they implicate a substantial fraction of all genes, Pritchard says.
The team found more evidence for their omnigenic model by analyzing other large genetic studies of rheumatoid arthritis, schizophrenia, and Crohns disease. Many of the variants identified by these studies seem relevant to the disease in question. For example, some of the schizophrenia variants affect genes involved in the nervous system. But mostly, the variants affect genes that dont make for compelling stories, and that do pretty generic things. According to the omnigenic model, theyre only contributing to the risk of disease in incidental ways, by rippling across to the more relevant core genes. Its the only model I can come up with that make all the data fit, Pritchard says.
Pritchards a very perceptive investigator, who looks beyond what most people do, says Aravinda Chakravarti, a geneticist at John Hopkins Medicine. Do I believe this all correct? No, but its very compelling. Its a serious hypothesis that weve got to prove or disprove.
If Pritchard is right, it has big implications for genetics as a field. Geneticists are running ever-bigger and more expensive searches to identify the variants behind all kinds of traits and diseases, in the specific hope that their results will tell them something biologically interesting. They could show us more about how our bodies develop, for example, or point to new approaches for treating disease. But if Pritchard is right, then most variants will not provide such leads because they exert their influence in incidental ways.
Put it this way: The Atlantic is produced by all of us who work here, but our lives are also affected by all the people we encounterfriends, roommates, partners, taxi drivers, passers-by etc. If you listed everyone who influences what happens at The Atlantic, even in small ways, all of those peripheral people would show up on the list. But almost none of them would tell you much about how we do journalism. They're important, but also not actually that relevant. Pritchard thinks the same is true for our genes. And if thats the case, he says, its not clear to me that increasing your study size is going to help very much.
The alternative, he says, is to map the networks of genes that operate within different cells. Once we know those, well be better placed to understand the results from the forthcoming mega-studies. It is a really hard problem, says Boyle. Historically, even understanding the role of one gene in one disease has been considered a major success. Now we have to somehow understand how combinations of seemingly hundreds or thousands of genes work together in very complicated ways. Its beyond our current ability.
There are, however, projects that are trying to do exactly that. Im very excited about trying to understand whether these network ideas are correct, says Pritchard. I think its telling us something profound about how our cells work.
See the original post here:
What If (Almost) Every Gene Affects (Almost) Everything? - The Atlantic
- New gene offers hope for preventive medicine against fractures [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Colon Cancer Gene Database May Assist Research Efforts [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Researchers discover gene that causes deafness [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene Study Yields New Clues to Breast Cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene key to chemotherapy efficacy [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene clues offer new hope for treating breast cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene that causes deafness pinpointed [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Gene that causes a form of deafness discovered [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Novel gene associated with Usher syndrome identified [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Translational Regenerative Medicine: Market Prospects 2012-2022 [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Two-day test can spot gene diseases in newborns [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fast Gene Screen May Help Sick Babies [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene therapies need new development models [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Rapid gene machines used to find cause of newborn illnesses [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene behind many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene responsible for many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Two-day test can spot gene diseases in newborns - Wed, 03 Oct 2012 PST [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Researchers Discover Gene Defect Linked to Deafness [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene diseases in newborns unveiled quicker [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Quicker gene test may help babies - Thu, 04 Oct 2012 PST [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Rapid gene-mapping test may diagnose disease in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 2-day test can spot gene diseases in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Gene diseases in newborns spotted with 2-day test [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Rare Gene Deletion Tied To Psychiatric Disease And Obesity [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai researchers discover gene signature that predicts prostate cancer survival [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Test Spots Newborn Gene Disease [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Gene signature predicts prostate cancer survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Researchers Discover Gene Signature that Predicts Prostate Cancer Survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Bioethics Panel Urges More Gene Privacy Protection [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- High Levels of Blood-Based Protein Specific to Mesothelioma [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Gene clues to help tackle skin disease [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Additive effect of small gene variations can increase risk of autism spectrum disorders [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- 2-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Two-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Gene Linked to Kidney Failure [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Nanoparticles seen as gene therapy advance [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Finding A Cure For Cancer with Dr. Aaron Rapoport - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- First gene therapy to go on sale in Europe in 2013: company [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Nanomedicine: Infectious Diseases, Immunotherapy, Diagnostics, Antifibrotics, Toxicology And Gene Me - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Stress gene linked to heart attack – Study [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Why not gift yourself with gene test this Christmas? [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- "Stress gene" may raise heart attack risk in healthy people [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- 'Stress Gene' Ups Heart Attack, Death Risk [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Common disorders: It's not the genes themselves, but how they are controlled [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- What is a gene? - Genetics Home Reference [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Medicine | Business Outline | About Us | TAKARA BIO INC. [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Therapy Clinical Trials Worldwide [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Genentech - Official Site [Last Updated On: December 21st, 2013] [Originally Added On: December 21st, 2013]
- Gene Therapy - American Medical Association [Last Updated On: December 23rd, 2013] [Originally Added On: December 23rd, 2013]
- Researchers identify gene that influences the ability to remember faces [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene That Influences Bonding Also Found To Impact Facial Recognition [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene Therapy Method Targets Tumor Blood Vessels [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Latin Americans inherited diabetes gene risk from Neanderthals [Last Updated On: December 26th, 2013] [Originally Added On: December 26th, 2013]
- Gene that influences the ability to remember faces identified [Last Updated On: December 30th, 2013] [Originally Added On: December 30th, 2013]
- Study supports a causal role in narcolepsy for a common genetic variant [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Increasing Investments in Molecular Biology Research Drives the Market for DNA Gene Chips, According to a New Trend ... [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Loss of Function of a Single Gene Linked to Diabetes in Mice [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Medicine and Health [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Therapy - Nature [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- KidsHealth for Parents - Gene Therapy and Children [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- Gene Patent Case Fuels U.S. Court Test of Stem Cell Right [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Gene Mutation Increases Certain Health Risks For Blacks, Study Finds [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Single faulty gene causes major type 2 diabetes symptom in mice [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- No 'brakes' -- Study finds mechanism for increased activity of oncogene in certain cancers [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- AML score that combines genetic and epigenetic changes might help guide therapy [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- Stem cell research identifies new gene targets in patients with Alzheimer's disease [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- 14 new gene targets in Alzheimer’s identified [Last Updated On: January 10th, 2014] [Originally Added On: January 10th, 2014]
- Scientists uncover new target for brain cancer treatment [Last Updated On: January 11th, 2014] [Originally Added On: January 11th, 2014]
- Tweaking MRI to Track Creatine May Spot Heart Problems Earlier, Penn Medicine Study Suggests [Last Updated On: January 13th, 2014] [Originally Added On: January 13th, 2014]
- RSNA: Gene Variation Associated with Brain Atrophy in Mild Cognitive Impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Keeping Stem Cells Pluripotent [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Gene variation associated with brain atrophy in mild cognitive impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Genes: MedlinePlus Medical Encyclopedia - National Library of ... [Last Updated On: January 15th, 2014] [Originally Added On: January 15th, 2014]
- Gene Therapy May Restore Sight in People With Rare Blinding Disease [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- Gene therapy treats blindness [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- New Genetic Clue to Lupus Is Found [Last Updated On: January 17th, 2014] [Originally Added On: January 17th, 2014]
- New Gene Machine Could Mean More Accurate Diagnosis [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]
- Same cell death pathway involved in three forms of blindness, study finds [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]