When will computer hardware match the human brain? by Hans Moravec

Posted: December 20, 2013 at 4:41 pm

Journal of Evolution and Technology. 1998. Vol. 1

When will computer hardware match the human brain?

ABSTRACT

This paper describes how the performance of AI machines tends to improve at the same pace that AI researchers get access to faster hardware. The processing power and memory capacity necessary to match general intellectual performance of the human brain are estimated. Based on extrapolation of past trends and on examination of technologies under development, it is predicted that the required hardware will be available in cheap machines in the 2020s.

By our estimate, today's very biggest supercomputers are within a factor of a hundred of having the power to mimic a human mind. Their successors a decade hence will be more than powerful enough. Yet, it is unlikely that machines costing tens of millions of dollars will be wasted doing what any human can do, when they could instead be solving urgent physical and mathematical problems nothing else can touch. Machines with human-like performance will make economic sense only when they cost less than humans, say when their "brains" cost about $1,000. When will that day arrive?

The expense of computation has fallen rapidly and persistently for a century. Steady improvements in mechanical and electromechanical calculators before World War II had increased the speed of calculation a thousandfold over hand calculation. The pace quickened with the appearance of electronic computers during the war--from 1940 to 1980 the amount of computation available at a given cost increased a millionfold. Vacuum tubes were replaced by transistors, and transistors by integrated circuits, whose components became ever smaller and more numerous. During the 1980s microcomputers reached the consumer market, and the industry became more diverse and competitive. Powerful, inexpensive computer workstations replaced the drafting boards of circuit and computer designers, and an increasing number of design steps were automated. The time to bring a new generation of computer to market shrank from two years at the beginning of the 1980s to less than nine months. The computer and communication industries grew into the largest on earth.

Computers doubled in capacity every two years after the war, a pace that became an industry given: companies that wished to grow sought to exceed it, companies that failed to keep up lost business. In the 1980s the doubling time contracted to 18 months, and computer performance in the late 1990s seems to be doubling every 12 months.

Faster than Exponential Growth in Computing Power. The number of MIPS in $1000 of computer from 1900 to the present. Steady improvements in mechanical and electromechanical calculators before World War II had increased the speed of calculation a thousandfold over manual methods from 1900 to 1940. The pace quickened with the appearance of electronic computers during the war, and 1940 to 1980 saw a millionfold increase. The pace has been even quicker since then, a pace which would make humanlike robots possible before the middle of the next century. The vertical scale is logarithmic, the major divisions represent thousandfold increases in computer performance. Exponential growth would show as a straight line, the upward curve indicates faster than exponential growth, or, equivalently, an accelerating rate of innovation. The reduced spread of the data in the 1990s is probably the result of intensified competition: underperforming machines are more rapidly squeezed out. The numerical data for this power curve are presented in the appendix.

At the present rate, computers suitable for humanlike robots will appear in the 2020s. Can the pace be sustained for another three decades? The graph shows no sign of abatement. If anything, it hints that further contractions in time scale are in store. But, one often encounters thoughtful articles by knowledgeable people in the semiconductor industry giving detailed reasons why the decades of phenomenal growth must soon come to an end.

Here is the original post:
When will computer hardware match the human brain? by Hans Moravec

Related Posts