Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding – Nature.com

Posted: July 11, 2024 at 6:50 pm

Renner, S. S. et al. A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proc. Natl Acad. Sci. USA 118, e2101486118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Levi, A. et al. Genetic diversity in the desert watermelon Citrullus colocynthis and its relationship with Citrullus species as determined by high-frequency oligonucleotides-targeting active gene markers. J. Am. Soc. Hortic. Sci. 142, 4756 (2017).

Article CAS Google Scholar

Yuan, P. et al. Watermelon domestication was shaped by stepwise selection and regulation of the metabolome. Sci. China Life Sci. 66, 579594 (2023).

Article CAS PubMed Google Scholar

Nkoana, D. K., Mashilo, J., Shimelis, H. & Ngwepe, R. M. Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): a review. S. Afr. J. Bot. 145, 6577 (2022).

Article CAS Google Scholar

Volino-Souza, M. et al. Current evidence of watermelon (Citrullus lanatus) ingestion on vascular health: a food science and technology perspective. Nutrients 14, 2913 (2022).

Article CAS PubMed PubMed Central Google Scholar

Guo, S. et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat. Genet. 51, 16161623 (2019).

Article CAS PubMed Google Scholar

Deng, Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 15, 12681284 (2022).

Article CAS PubMed Google Scholar

Zhou, Y. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527534 (2022).

Article CAS PubMed Google Scholar

Tang, D. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 606, 535541 (2022).

Article CAS PubMed PubMed Central Google Scholar

Shang, L. et al. A super pan-genomic landscape of rice. Cell Res. 32, 878896 (2022).

Article CAS PubMed PubMed Central Google Scholar

Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852860 (2023).

Article CAS PubMed PubMed Central Google Scholar

Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412431 (2022).

Article CAS PubMed Google Scholar

Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162176 (2020).

Article CAS PubMed Google Scholar

Wu, S. et al. Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnol. J. 21, 19261928 (2023).

Article CAS PubMed PubMed Central Google Scholar

Wellenreuther, M., Mrot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol. 28, 12031209 (2019).

Article PubMed Google Scholar

Ren, Y. et al. Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Mol. Breed. 35, 183 (2015).

Article PubMed Google Scholar

Ren, Y. et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7, e29453 (2012).

Article CAS PubMed PubMed Central Google Scholar

Wang, J. et al. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Hortic. Res. 8, 214 (2021).

Article CAS PubMed PubMed Central Google Scholar

Wang, Y. et al. CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon. Hortic. Res. 8, 70 (2021).

Article CAS PubMed PubMed Central Google Scholar

Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351358 (2001).

Article PubMed Google Scholar

Hawkins, L. K. et al. Linkage mapping in a watermelon population segregating for fusarium wilt resistance. J. Am. Soc. Hortic. Sci. 126, 344350 (2001).

Article CAS Google Scholar

Sain, R. S. & Joshi, P. Pollen fertility of interspecific F1 hybrids in genus Citrullus (Cucurbitaceae). Curr. Sci. 85, 431434 (2003).

Google Scholar

Sandlin, K. C. et al. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor. Appl. Genet. 125, 16031618 (2012).

Article PubMed Google Scholar

McGregor, C. E. & Waters, V. Pollen viability of F1 hybrids between watermelon cultivars and disease-resistant, infraspecific crop wild relatives. Hortscience 48, 14281432 (2013).

Article Google Scholar

Ren, Y. et al. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 14, 33 (2014).

Article PubMed PubMed Central Google Scholar

Ni, L. et al. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol. 24, 12 (2023).

Article CAS PubMed PubMed Central Google Scholar

Monforte, A. et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J. Exp. Bot. 65, 46254637 (2014).

Article CAS PubMed Google Scholar

Paudel, L., Clevenger, J. & McGregor, C. Chromosomal locations and interactions of four loci associated with seed coat color in watermelon. Front. Plant Sci. 10, 788 (2019).

Article PubMed PubMed Central Google Scholar

Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45, 5158 (2013).

Article CAS PubMed Google Scholar

Zhang, J. et al. Highlevel expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 213, 12081221 (2017).

Article CAS PubMed Google Scholar

Chomicki, G., Schaefer, H. & Renner, S. S. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol. 226, 12401255 (2020).

Article PubMed Google Scholar

Zhou, Y. et al. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat. Plants 2, 16183 (2016).

Article CAS PubMed PubMed Central Google Scholar

Zhong, Y. et al. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nat. Plants 8, 887896 (2022).

Article CAS PubMed Google Scholar

Gong, C. et al. Multi-omics integration to explore the molecular insight into the volatile organic compounds in watermelon. Food Res. Int. 166, 112603 (2023).

Article CAS PubMed Google Scholar

Ren, Y. et al. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytol. 227, 18581871 (2020).

Article CAS PubMed Google Scholar

Ren, Y. et al. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell 33, 15541573 (2021).

Article PubMed PubMed Central Google Scholar

Liu, S. et al. Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.). Theor. Appl. Genet. 135, 185200 (2022).

Article CAS PubMed Google Scholar

Dou, J. et al. Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape. Front. Genet. 13, 993218 (2022).

Article CAS PubMed PubMed Central Google Scholar

Li, N. et al. A 13.96-kb chromosomal deletion of two genes is responsible for the tomato seed size in watermelon (Citrullus lanatus). Plant Breed. 140, 944952 (2021).

Article CAS Google Scholar

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884i890 (2018).

Article PubMed PubMed Central Google Scholar

Belton, J.-M. et al. HiC: a comprehensive technique to capture the conformation of genomes. Methods 58, 268276 (2012).

Article CAS PubMed Google Scholar

Marais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764770 (2011).

Article PubMed PubMed Central Google Scholar

Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 22022204 (2017).

Article CAS PubMed PubMed Central Google Scholar

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170175 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 13321335 (2022).

Article CAS PubMed Google Scholar

Hu, J. et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biol. 25, 107 (2024).

Article PubMed PubMed Central Google Scholar

Li, K. et al. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol. Plant 14, 17451756 (2021).

Article CAS PubMed Google Scholar

Bankevich, A. et al. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nat. Biotechnol. 40, 10751081 (2022).

Article CAS PubMed Google Scholar

Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

Article PubMed PubMed Central Google Scholar

Wang, S. et al. EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-C links from contig ends. BMC Bioinformatics 23, 528 (2022).

Article CAS PubMed PubMed Central Google Scholar

See the original post:
Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding - Nature.com

Related Posts