Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure – Nature.com

Posted: April 27, 2024 at 12:09 pm

Schrer, O. D. Nucleotide excision repair in Eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

Article PubMed PubMed Central Google Scholar

Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465481 (2014).

Article CAS PubMed Google Scholar

Mu, H., Geacintov, N. E., Broyde, S., Yeo, J. E. & Schrer, O. D. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair 71, 3342 (2018). vol.

Article CAS PubMed PubMed Central Google Scholar

Sugasawa, K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst.) 44, 110117 (2016).

Article CAS PubMed Google Scholar

Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766784 (2019).

Article CAS PubMed Google Scholar

Jia, N. et al. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst.) 106, 103192 (2021).

Article CAS PubMed Google Scholar

Theil, A. F., Hckes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst.) 132, 103568 (2023).

Article CAS PubMed Google Scholar

Bernardes de Jesus, B. M., Bjrs, M., Coin, F. & Egly, J. M. Dissection of the Molecular Defects Caused by Pathogenic Mutations in the DNA Repair Factor XPC. Mol. Cell. Biol. 28, 72257235 (2008).

Article CAS PubMed PubMed Central Google Scholar

Okuda, M., Nakazawa, Y., Guo, C., Ogi, T. & Nishimura, Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res. 45, 1304313055 (2017).

Article CAS PubMed PubMed Central Google Scholar

Oksenych, V., De Jesus, B. B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 29712980 (2009).

Article CAS PubMed PubMed Central Google Scholar

van der Weegen, Y. et al. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat. Commun. 11, 116 (2020).

Google Scholar

Ribeiro-Silva, C. et al. Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat. Commun. 11, 4868 (2020).

Article CAS PubMed PubMed Central Google Scholar

Coin, F., Oksenych, V. & Egly, J. M. Distinct Roles for the XPB/p52 and XPD/p44 Subcomplexes of TFIIH in Damaged DNA Opening during Nucleotide Excision Repair. Mol. Cell 26, 245256 (2007).

Article CAS PubMed Google Scholar

Sugasawa, K., Akagi, Jichi, Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642653 (2009).

Article CAS PubMed Google Scholar

Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 10251034 (2015).

Article CAS PubMed PubMed Central Google Scholar

De Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 25982609 (1998).

Article PubMed PubMed Central Google Scholar

Matsunaga, T., Park, C. H., Bessho, T., Mu, D. & Sancar, A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271, 1104711050 (1996).

Article CAS PubMed Google Scholar

Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A. & Chazin, W. J. XPA: A key scaffold for human nucleotide excision repair. DNA Repair 44, 123135 (2016).

Article CAS PubMed PubMed Central Google Scholar

Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).

Article PubMed PubMed Central Google Scholar

Coin, F. et al. Nucleotide Excision Repair Driven by the Dissociation of CAK from TFIIH. Mol. Cell 31, 920 (2008).

Article CAS PubMed Google Scholar

Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 11111120 (2009).

Article CAS PubMed PubMed Central Google Scholar

Fagbemi, A. F., Orelli, B. & Schrer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst.) 10, 722729 (2011).

Article CAS PubMed Google Scholar

Muniesa-Vargas, A. et al. XPG: a multitasking genome caretaker. Cell. Mol. Life Sci. 79, 120 (2022).

Article Google Scholar

van Toorn, M. et al. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol. Cell 82, 13431358.e8 (2022).

Article PubMed PubMed Central Google Scholar

Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714727 (2010).

Article CAS PubMed Google Scholar

Ferri, D., Orioli, D. & Botta, E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin. Genet. 97, 1224 (2020).

Article CAS PubMed Google Scholar

Lehmann, A. R., McGibbon, D. & Stefanini, M. Xeroderma pigmentosum. Orphanet J. Rare Dis. 6, 70 (2011).

Article PubMed PubMed Central Google Scholar

Natale, V. A comprehensive description of the severity groups in Cockayne syndrome. Am. J. Med. Genet. A 155A, 10811095 (2011).

Article PubMed Google Scholar

Natale, V. & Raquer, H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J. Rare Dis. 12, 65 (2017).

Article PubMed PubMed Central Google Scholar

Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience 145, 13881396 (2007).

Article CAS PubMed Google Scholar

Theil, A. F., Hoeijmakers, J. H. J. & Vermeulen, W. TTDA: big impact of a small protein. Exp. Cell Res. 329, 6168 (2014).

Article CAS PubMed Google Scholar

Stefanini, M., Botta, E., Lanzafame, M. & Orioli, D. Trichothiodystrophy: From basic mechanisms to clinical implications. DNA Repair 9, 210 (2010).

Article CAS PubMed Google Scholar

Rahbar, Z. & Naraghi, M. De Sanctis-Cacchione syndrome: A case report and literature review. Int. J. Womens Dermatol. 1, 136139 (2015).

Article Google Scholar

Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L. & Bohr, V. A. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res. Rev. 33, 317 (2017).

Article CAS PubMed Google Scholar

Wang, Y. et al. Dysregulation of gene expression as a cause of cockayne syndrome neurological disease. Proc. Natl Acad. Sci. Usa. 111, 1445414459 (2014).

Article CAS PubMed PubMed Central Google Scholar

Vlez-Cruz, R. & Egly, J. M. Cockayne syndrome group B (CSB) protein: At the crossroads of transcriptional networks. Mech. Ageing Dev. 134, 234242 (2013).

Article PubMed Google Scholar

Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 95639577 (2018).

Article CAS PubMed PubMed Central Google Scholar

Lans, H. & Vermeulen, W. Tissue specific response to DNA damage: C. elegans as role model. DNA Repair (Amst.) 32, 141148 (2015).

Article CAS PubMed Google Scholar

Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 11631174 (2002).

Article CAS PubMed Google Scholar

Vermeulen, W. Dynamics of mammalian NER proteins. DNA Repair (Amst.) 10, 760771 (2011).

Article CAS PubMed Google Scholar

Fassihi, H. et al. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proc. Natl Acad. Sci. Usa. 113, E1236E1245 (2016).

Article CAS PubMed PubMed Central Google Scholar

Kashiyama, K. et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807819 (2013).

Article CAS PubMed PubMed Central Google Scholar

Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811822 (1996).

Article CAS PubMed Google Scholar

Ahmad, A. et al. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients. PLoS Genet 6, e1000871 (2010).

Article PubMed PubMed Central Google Scholar

Jia, N. et al. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat. Protoc. 10, 1224 (2015).

Article CAS PubMed Google Scholar

Llerena Schiffmacher, D. A. et al. Live cell transcription-coupled nucleotide excision repair dynamics revisited. DNA Repair (Amst.) 130, 103566 (2023).

Article CAS PubMed Google Scholar

Geijer, M. E. et al. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat. Cell Biol. 23, 608619 (2021).

Article CAS PubMed PubMed Central Google Scholar

Kim, D. E. et al. Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072 (2020).

Article MathSciNet CAS PubMed Google Scholar

Harada, Y.-N. et al. Postnatal Growth Failure, Short Life Span, and Early Onset of Cellular Senescence and Subsequent Immortalization in Mice Lacking the Xeroderma Pigmentosum Group G Gene. Mol. Cell. Biol. 19, 2366 (1999).

Article CAS PubMed PubMed Central Google Scholar

Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 10381043 (2006).

Article CAS PubMed Google Scholar

Excerpt from:
Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure - Nature.com

Related Posts