Interlocking of co-opted developmental gene networks in Drosophila … – Nature.com

Posted: September 19, 2023 at 12:25 am

True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 5380 (2002).

Article CAS PubMed Google Scholar

Murugesan, S. N. et al. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. Proc. Natl Acad. Sci. USA 119, e2108661119 https://doi.org/10.1073/pnas.2108661119 (2022).

Glassford, W. J. et al. Co-option of an ancestral hox-regulated network underlies a recently evolved morphological novelty. Dev. Cell 34, 520531 (2015).

Article CAS PubMed PubMed Central Google Scholar

Hu, N. & Castelli-Gair, J. Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Dev. Biol. 214, 197210 (1999).

Article CAS PubMed Google Scholar

Merabet, S., Hombria, J. C., Hu, N., Pradel, J. & Graba, Y. Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis. Development 132, 30933102 (2005).

Article CAS PubMed Google Scholar

Lovegrove, B. et al. Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila. Curr. Biol. 16, 22062216 (2006).

Article CAS PubMed Google Scholar

Frazee, S. R. & Masly, J. P. Multiple sexual selection pressures drive the rapid evolution of complex morphology in a male secondary genital structure. Ecol. Evol. 5, 44374450 (2015).

Article PubMed PubMed Central Google Scholar

McQueen, E. & Rebeiz, M. On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution? Curr. Top. Dev. Biol. 139, 375405 (2020).

Article CAS PubMed PubMed Central Google Scholar

DiNardo, S., Kuner, J. M., Theis, J. & OFarrell, P. H. Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43, 5969 (1985).

Article CAS PubMed PubMed Central Google Scholar

Patel, N. H., Kornberg, T. B. & Goodman, C. S. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107, 201212 (1989).

Article CAS PubMed Google Scholar

Damen, W. G. Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129, 12391250 (2002).

Article CAS PubMed Google Scholar

Prudhomme, B. et al. Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr. Biol. 13, 18761881 (2003).

Article PubMed Google Scholar

Akam, M. The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 122 (1987).

Article CAS PubMed Google Scholar

Ingham, P. W. Segment polarity genes and cell patterning within the Drosophila body segment. Curr. Opin. Genet. Dev. 1, 261267 (1991).

Article MathSciNet CAS PubMed Google Scholar

Sanson, B. Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep. 2, 10831088 (2001).

Article CAS PubMed PubMed Central Google Scholar

Monier, B., Pelissier-Monier, A., Brand, A. H. & Sanson, B. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat. Cell Biol. 12, 6069 (2010).

Article CAS PubMed Google Scholar

Blair, S. S. Engrailed expression in the anterior lineage compartment of the developing wing blade of Drosophila. Development 115, 2133 (1992).

Article CAS PubMed Google Scholar

Wiegmann, B. M. et al. Episodic radiations in the fly tree of life. Proc. Natl Acad. Sci. USA 108, 56905695 (2011).

Article ADS CAS PubMed PubMed Central Google Scholar

Cheng, Y. et al. Co-regulation of invected and engrailed by a complex array of regulatory sequences in Drosophila. Dev. Biol. 395, 131143 (2014).

Article CAS PubMed PubMed Central Google Scholar

Hombria, J. C.-G., Sanchez-Higueras, C. & Sanchez-Herrero, E. In Organogenetic Gene Networks (eds. Castelli-Gair Hombra, J. & Bovolenta, P.) Ch. 12, 319373 (2016).

Castelli Gair Hombria, J., Rivas, M. L. & Sotillos, S. Genetic control of morphogenesisHox induced organogenesis of the posterior spiracles. Int. J. Dev. Biol. 53, 13491358 (2009).

Article PubMed Google Scholar

Rivas, M. L., Cobreros, L., Zeidler, M. P. & Hombria, J. C. Plasticity of Drosophila Stat DNA binding shows an evolutionary basis for Stat transcription factor preferences. EMBO Rep. 9, 11141120 (2008).

Article CAS PubMed PubMed Central Google Scholar

Barrio, R., de Celis, J. F., Bolshakov, S. & Kafatos, F. C. Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages. Dev. Biol. 215, 3347 (1999).

Article CAS PubMed Google Scholar

Lee, J. J., von Kessler, D. P., Parks, S. & Beachy, P. A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 3350 (1992).

Article CAS PubMed Google Scholar

Delorenzi, M. & Bienz, M. Expression of Abdominal-B homeoproteins in Drosophila embryos. Development 108, 323329 (1990).

Article CAS PubMed Google Scholar

Casanova, J., Sanchez-Herrero, E. & Morata, G. Identification and characterization of a parasegment specific regulatory element of the abdominal-B gene of Drosophila. Cell 47, 627636 (1986).

Article CAS PubMed Google Scholar

Santel, A., Winhauer, T., Blumer, N. & Renkawitz-Pohl, R. The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech. Dev. 64, 1930 (1997).

Article CAS PubMed Google Scholar

Fuller, M. T. Spermatogenesis. In The Development of Drosophila melanogaster. (eds. Bate & Martinez Arias) 1, 71147 (Cold Spring Harbour Laboratory Press, 1993).

Leatherman, J. L. & Dinardo, S. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat. Cell Biol. 12, 806811 (2010).

Article CAS PubMed PubMed Central Google Scholar

Dubey, P., Shirolikar, S. & Ray, K. Localized, reactive F-actin dynamics prevents abnormal somatic cell penetration by mature spermatids. Dev. Cell 38, 507521 (2016).

Article CAS PubMed Google Scholar

Desai, B. S., Shirolikar, S. & Ray, K. F-actin-based extensions of the head cyst cell adhere to the maturing spermatids to maintain them in a tight bundle and prevent their premature release in Drosophila testis. BMC Biol. 7, 19 (2009).

Article PubMed PubMed Central Google Scholar

DeFalco, T., Le Bras, S. & Van Doren, M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech. Dev. 121, 13231333 (2004).

Article CAS PubMed Google Scholar

Papagiannouli, F., Schardt, L., Grajcarek, J., Ha, N. & Lohmann, I. The Hox gene Abd-B controls stem cell niche function in the Drosophila testis. Dev. Cell 28, 189202 (2014).

Article CAS PubMed Google Scholar

Zhang, S. et al. Repression of Abd-B by Polycomb is critical for cell identity maintenance in adult Drosophila testis. Sci. Rep. 7, 5101 (2017).

Article ADS PubMed PubMed Central Google Scholar

Bach, E. A. et al. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr. Patterns 7, 323331 (2007).

Article CAS PubMed Google Scholar

Hombria, J. C. & Sotillos, S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2, e26089 (2013).

PubMed PubMed Central Google Scholar

Pinto, P. B., Espinosa-Vazquez, J. M., Rivas, M. L. & Hombria, J. C. JAK/STAT and hox dynamic interactions in an organogenetic gene cascade. PLoS Genet. 11, e1005412 (2015).

Article PubMed PubMed Central Google Scholar

Ganfornina, M. D. & Sanchez, D. Generation of evolutionary novelty by functional shift. Bioessays 21, 432439 (1999).

Article CAS PubMed Google Scholar

Hu, Y. & Moczek, A. P. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles. Proc. Biol. Sci. 288, 20202828 (2021).

CAS PubMed PubMed Central Google Scholar

DiFrisco, J., Wagner, G. P. & Love, A. C. Reframing research on evolutionary novelty and co-option: Character identity mechanisms versus deep homology. Semin. Cell Dev. Biol. 145:3-12 https://doi.org/10.1016/j.semcdb.2022.03.030 (2022).

Almud, I. & Pascual-Anaya, J. in Old Questions and Young Approaches to Animal Evolution (eds. Martn-Durn JM & Vellutini BC) Ch. 6, 107132 (Springer Nature, 2019).

Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 17881792 (1995).

Article ADS CAS PubMed Google Scholar

Chen, R., Halder, G., Zhang, Z. & Mardon, G. Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126, 935943 (1999).

Article CAS PubMed Google Scholar

Kango-Singh, M., Singh, A. & Henry Sun, Y. Eyeless collaborates with Hedgehog and Decapentaplegic signaling in Drosophila eye induction. Dev. Biol. 256, 4960 (2003).

Article PubMed Google Scholar

Brunetti, C. R. et al. The generation and diversification of butterfly eyespot color patterns. Curr. Biol. 11, 15781585 (2001).

Article CAS PubMed Google Scholar

Ahzhanov, A. & Kaufman, T. C. Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev. Genes Evol. 210, 493506 (2000).

Franke, F. A. & Mayer, G. Controversies surrounding segments and parasegments in onychophora: insights from the expression patterns of four segment polarity genes in the peripatopsid Euperipatoides rowelli. PLoS ONE 9, e114383 (2014).

Article ADS PubMed PubMed Central Google Scholar

Dufour, H. D., Koshikawa, S. & Finet, C. Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies. Proc. Natl Acad. Sci. USA 117, 1158911596 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Mellenthin, K. et al. Wingless signaling in a large insect, the blowfly Lucilia sericata: a beautiful example of evolutionary developmental biology. Dev. Dyn. 235, 347360 (2006).

Article CAS PubMed Google Scholar

Suksuwan, W., Cai, X., Ngernsiri, L. & Baumgartner, S. Segmentation gene expression patterns in Bactrocera dorsalis and related insects: regulation and shape of blastoderm and larval cuticle. Int. J. Dev. Biol. 61, 439450 (2017).

Article CAS PubMed Google Scholar

Hanna, L. & Popadic, A. A hemipteran insect reveals new genetic mechanisms and evolutionary insights into tracheal system development. Proc. Natl Acad. Sci. USA 117, 42524261 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

de Miguel, C., Linsler, F., Casanova, J. & Franch-Marro, X. Genetic basis for the evolution of organ morphogenesis: the case of spalt and cut in the development of insect trachea. Development 143, 36153622 (2016).

PubMed Google Scholar

Lim, J. & Choe, C. P. Functional analysis of engrailed in Tribolium segmentation. Mech. Dev. 161, 103594 (2020).

Article CAS PubMed Google Scholar

Read more:

Interlocking of co-opted developmental gene networks in Drosophila ... - Nature.com

Related Posts