Artificial intelligence is a transformative tool in the workplace except when it isnt.
For top managers, state-of-the art AI tools are a no-brainer: in theory, they increase revenues, decrease costs, and improve the quality of products and services. But in the wild, its often just the opposite for frontline employees who actually need to integrate these tools into their daily work. Not only can AI tools yield few benefits, but they can also introduce additional work and decrease autonomy.
Our research on the introduction of 15 AI clinical decision support tools over the past five years at Duke Health has shown that the key to successfully integrating them is recognizing that increasing the value for frontline employees is as important as making sure the tools work in the first place. The tactics we identified are useful not only in biopharma, medicine, and health care, but across a range of other industries as well.
advertisement
Here are six tactics for making artificial intelligence-based tools work on industry frontlines.
AI project leaders need to increase benefits for the frontline employees who will be the actual end users of a new tool, though this is often not the group that initially approaches them to build it.
advertisement
Cardiologists in Dukes intensive care unit asked AI project team leaders to build a tool to identify heart attack patients who did not need ICU care. Cardiologists said the tool would allow frontline emergency physicians to more easily identify these patients and triage them to noncritical care, increasing the quality of care, lowering costs, and preventing unnecessary overcrowding in the ICU.
The team developed a highly accurate tool that helped ER doctors identify low-risk patients. But within weeks of launching the tool, it was scrapped. Frontline emergency physicians complained that they didnt need a tool to tell us how to do our job. Incorporating the tool meant extra work and they resented the outsider intrusion.
The artificial intelligence team had been so focused on the needs of the group that initially approached them cardiologists that they neglected those who would actually use the tool emergency physicians.
The next time cardiologists approached the developers, the latter were savvier. This time, the cardiologists wanted an AI tool to help identify patients with low-risk pulmonary embolism (one or more blood clots in the lungs), so they could be sent home instead of hospitalized. The developers immediately reached out to emergency physicians, who would ultimately use the tool, to understand their pain points around the treatment of patients with pulmonary embolism. The developers learned that emergency physicians would use the tool only if they could be sure that patients would get the appropriate follow-up care. Cardiologists agreed to staff a special outpatient clinic for these patients.
This time, the emergency doctors accepted the tool, and it was successfully integrated into the emergency department workflow.
The key lesson here is that project leaders need to identify the frontline employees who will be the true end users of a new tool based on artificial intelligence. Otherwise, they will resist adopting it. When employees are included in the development process, they will make the tool more useful in daily work.
Successful AI project team leaders measure and reward frontline employees for accomplishing the outcomes the tool is designed to improve.
In the pulmonary embolism project described earlier, project leaders learned that emergency physicians might not use the tool because they were evaluated on how well they recognized and handled acute, common issues rather than how well they recognized and handled uncommon issues like low-risk pulmonary embolism. So the leaders worked with hospital management to change the reward system in a way that emergency physicians are now also evaluated based on how successfully they recognize and triage low-risk pulmonary embolism patients.
It may seem obvious that it is necessary to reward employees for accomplishing the outcomes a tool is designed to improve. But this is easier said than done, because AI project team leaders usually dont control compensation decisions for these employees. Project leaders need to gain top managers support to help change incentives for end users.
Data used to train a tool based on artificial intelligence must be representative of the target population in which it will be used. This requires a lot of training data, and identifying and cleaning data during AI tool design requires a lot of data work. AI project team leaders need to reduce the amount of this work that falls on frontline employees.
For example, kidney specialists asked the Duke AI team for a tool to increase early detection of people at high risk of chronic kidney disease. It would help frontline primary care physicians both detect patients who needed to be referred to nephrologists, and reduce the number of low-risk patients who were needlessly referred to nephrologists.
To build the tool, developers initially wanted to engage primary care practitioners in time-consuming work to spot and resolve data discrepancies between different data sources. But because it was the nephrologists, not the primary care practitioners, who would primarily benefit from the tool, PCPs were not enthusiastic to take on additional work to build a tool they didnt ask for. So the developers enlisted nephrologists rather than PCPs to do the work on data label generation, data curation, and data quality assurance.
Reducing data work for frontline employees makes perfect sense, so why do some AI project leaders fail to do it? Because these employees know data idiosyncrasies and the best outcome measures. The solution is to involve them, but use their labor judiciously.
Developing AI tools requires frontline employees to engage in integration work to incorporate the tool into their daily workflows. Developers can increase implementation by reducing this integration work.
Developers working on the kidney disease tool avoided requesting information they could retrieve automatically. They also made the tool easier to use by color coding high-risk patients in red, and medium-risk patients in yellow.
With integration work, AI developers often want to involve frontline employees for two reasons: because they know best how a new tool will fit into workflows and because those who are involved in development are more likely to help persuade their peers to use the tool. Instead of avoiding enlisting frontline employees altogether, developers need to assess which aspects of AI tool development will benefit most from their labor.
Most jobs include valued tasks as well as necessary scut work. One important tactic for AI developers is not infringing on the work that frontline employees value.
What emergency physicians value is diagnosing problems and efficiently triaging patients. So when Dukes artificial intelligence team began developing a tool to better detect and manage the potentially deadly bloodstream infection known as sepsis, they tried to configure it to avoid infringing on emergency physicians valued tasks. They built it instead to help with what these doctors valued less: blood test analysis, medication administration, and physical exam assessments.
AI project team leaders often fail to protect the core work of frontline employees because intervening around these important tasks often promises to yield greater gains. Smart AI leaders have discovered, however, that employees are much more likely to use the technology that helps them with their scut work rather than one that infringes on the work they love to do.
Introducing a new AI decision support tool can threaten to curtail employee autonomy. For example, because the AI sepsis tool flagged patients at high risk of this condition, it threatened clinicians autonomy around diagnosing patients. So the project team invited key frontline workers to choose the best ways to test the tools effectiveness.
AI project team leaders often fail to include frontline employees in the evaluation process because they can make it harder in the short term. When frontline employees are asked to select what will be tested, they often select the most challenging options. We have found, however, that developers cannot bypass this phase, because employees will balk at using the tools if they dont have confidence in them.
Behind the bold promise of AI lies a stark reality: AI solutions often make employees lives harder. Managers need to increase value for those working on the front lines to allow AI to function in the real world.
Katherine C. Kellogg is a professor of management and innovation and head of the Work and Organization Studies department at the MIT Sloan School of Management. Mark P. Sendak is the population health and data science lead at the Duke Institute for Health Innovation. Suresh Balu is the associate dean for innovation and partnership for the Duke University School of Medicine and director of the Duke Institute for Health Innovation.
Visit link:
6 tactics to make artificial intelligence work on the frontlines - STAT
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]