Dynamic genome evolution in a model fern – Nature.com

Posted: September 2, 2022 at 2:38 am

Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 3339 (1997).

CAS Article Google Scholar

Lloyd, R. M. Mating systems and genetic load in pioneer and non-pioneer Hawaiian Pteridophyta. Bot. J. Linn. Soc. 69, 2335 (1974).

Article Google Scholar

Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549551 (2004).

CAS PubMed Article Google Scholar

de Len, S. G., Briones, O., Aguirre, A., Mehltreter, K. & Prez-Garca, B. Germination of an invasive fern responds better than native ferns to water and light stress in a Mexican cloud forest. Biol. Invas. 20, 31873199 (2021).

Article Google Scholar

Raja, W., Rathaur, P., John, S. A. & Ramteke, P. W. Azolla: an aquatic pteridophyte with great potential. Int. J. Res. Biol. Sci. 2, 6872 (2012).

Google Scholar

PPG I. A communityderived classification for extant lycophytes and ferns. J. Syst. Evol. 54, 563603 (2016).

Article Google Scholar

Mehltreter, K., Walker, L. R. & Sharpe, J. M. (eds) Fern Ecology (Cambridge Univ. Press, 2010).

Cao, H. et al. Phytochemicals from fern species: potential for medicine applications. Phytochem. Rev. 16, 379440 (2017).

CAS PubMed PubMed Central Article Google Scholar

Goswami, H. K., Sen, K. & Mukhopadhyay, R. Pteridophytes: evolutionary boon as medicinal plants. Plant Genet. Resour. 14, 328355 (2016).

CAS Article Google Scholar

Shukla, A. K. et al. Expression of an insecticidal fern protein in cotton protects against whitefly. Nat. Biotechnol. 34, 10461051 (2016).

CAS PubMed Article Google Scholar

Sessa, E. B. & Der, J. P. in Advances in Botanical Research Vol. 78, (ed. Rensing, S. A.) 215254 (Elsevier, 2016).

Klekowski, E. & Baker, H. Evolutionary significance of polyploidy in the Pteridophyta. Science 153, 305307 (1966).

PubMed Article Google Scholar

Haufler, C. H. Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Am. J. Bot. 101, 20362042 (2014).

PubMed Article Google Scholar

Soltis, D. E. & Soltis, P. S. Polyploidy and breeding systems in homosporous Pteridophyta: a reevaluation. Am. Nat. 130, 219232 (1987).

Article Google Scholar

Nakazato, T., Jung, M.-K., Housworth, E. A., Rieseberg, L. H. & Gastony, G. J. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173, 15851597 (2006).

CAS PubMed PubMed Central Article Google Scholar

Marchant, D. B. et al. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Sci. Rep. 9, 18181 (2019).

CAS PubMed PubMed Central Article Google Scholar

Hickok, L. G., Warne, T. R., Baxter, S. L. & Melear, C. T. Education: sex and the C-Fern: not just another life cycle. Bioscience 48, 10311037 (1998).

Article Google Scholar

Sessa, E. B. et al. Between two fern genomes. Gigascience 3, 15 (2014).

PubMed PubMed Central Article Google Scholar

Marchant, D. B. Ferns with benefits: incorporating Ceratopteris into the genomics era. Am. Fern J. 109, 183191 (2019).

Article Google Scholar

Li, F.-W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460472 (2018).

CAS PubMed PubMed Central Article Google Scholar

Xiong, X. et al. The Taxus genome provides insights into paclitaxel biosynthesis. Nat. Plants 7, 10261036 (2021).

CAS PubMed PubMed Central Article Google Scholar

Zonneveld, B. J. M. Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord. J. Bot. 30, 490502 (2012).

Article Google Scholar

Scott, A. D. et al. A reference genome sequence for giant sequoia. G3 10, 39073919 (2020).

CAS PubMed PubMed Central Article Google Scholar

Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 4961 (2013).

CAS PubMed Article Google Scholar

Hawkins, J. S., Proulx, S. R., Rapp, R. A. & Wendel, J. F. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl Acad. Sci. USA 106, 1781117816 (2009).

CAS PubMed PubMed Central Article Google Scholar

Galindo-Gonzlez, L., Mhiri, C., Deyholos, M. K. & Grandbastien, M.-A. LTR-retrotransposons in plants: engines of evolution. Gene 626, 1425 (2017).

PubMed Article CAS Google Scholar

Simo, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 32103212 (2015).

PubMed Article CAS Google Scholar

Wegrzyn, J. L. et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196, 891909 (2014).

CAS PubMed PubMed Central Article Google Scholar

Ren, X.-Y., Vorst, O., Fiers, M. W. E. J., Stiekema, W. J. & Nap, J.-P. In plants, highly expressed genes are the least compact. Trends Genet. 22, 528532 (2006).

CAS PubMed Article Google Scholar

Callis, J., Fromm, M. & Walbot, V. Introns increase gene expression in cultured maize cells. Genes Dev. 1, 11831200 (1987).

CAS PubMed Article Google Scholar

One Thousand Plant Transcriptomes InitiativeOne thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679685 (2019).

CAS Article Google Scholar

Soltis, P. S., Marchant, D. B., Van de Peer, Y. & Soltis, D. E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 35, 119125 (2015).

CAS PubMed Article Google Scholar

Haufler, C. H. & Soltis, D. E. Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proc. Natl Acad. Sci. USA 83, 43894393 (1986).

CAS PubMed PubMed Central Article Google Scholar

Haufler, C. H. Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am. J. Bot. 74, 953966 (1987).

Article Google Scholar

Wagner, W. H. Reticulate evolution in the Appalachian Aspleniums. Evolution 8, 103118 (1954).

Article Google Scholar

Wagner, W. H. in Distributional History of the Biota of the Southern Appalachians (eds Holt, P. C. & Paterson R. A.) 147192 (Virginia Polytechnic Institute, 1971).

Klekowski, E. Genetical features of ferns as contrasted with seed plants. Ann. Mo. Bot. Gard. 59, 138151 (1972).

Article Google Scholar

Barker, M. S., Vogel, H. & Schranz, M. E. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1, 391399 (2009).

PubMed PubMed Central Article CAS Google Scholar

Clark, J. et al. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210, 10721082 (2016).

CAS PubMed Article Google Scholar

Barker, M. S. & Wolf, P. G. Unfurling fern biology in the genomics age. Bioscience 60, 177185 (2010).

Article Google Scholar

Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, e1501084 (2015).

PubMed PubMed Central Article Google Scholar

Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429447 (2000).

CAS PubMed Article Google Scholar

Lai, H., Stolzer, M. & Durand, D. Fast heuristics for resolving weakly supported branches using duplication, transfers, and losses. In RECOMB International Workshop on Comparative Genomics (eds Meidanis, J. & Nakhleh, L.) 298320 (Springer, 2017).

Schuettpelz, E. & Pryer, K. M. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc. Natl Acad. Sci. USA 106, 1120011205 (2009).

CAS PubMed PubMed Central Article Google Scholar

Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 lowcopy nuclear genes. Am. J. Bot. 102, 10891107 (2015).

CAS PubMed Article Google Scholar

Huang, X. et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat. Plants 8, 500512 (2022).

CAS PubMed PubMed Central Article Google Scholar

Chen, H. et al. Revisiting ancient polyploidy in leptosporangiate ferns. Preprint at bioRxiv https://doi.org/10.1101/2022.03.12.484015 (2022).

Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the CretaceousPaleogene boundary. Genome Res. 24, 13341347 (2014).

CAS PubMed PubMed Central Article Google Scholar

Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433438 (2003).

CAS PubMed Article Google Scholar

Dodsworth, S., Chase, M. W. & Leitch, A. R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 180, 15 (2016).

Article Google Scholar

Mandkov, T. & Lysak, M. A. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 5565 (2018).

PubMed Article Google Scholar

Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387410 (2021).

CAS PubMed Article Google Scholar

McKibben, M. T. W. & Barker, M. S. Applying machine learning to classify the origins of gene duplications. Preprint at bioRxiv https://doi.org/10.1101/2021.08.12.456144 (2021).

Go here to see the original:
Dynamic genome evolution in a model fern - Nature.com

Related Posts